Transformative Impacts of Sea-Level Rise, Storm Surge, and Wetland Migration on Intertidal Native Shell-Bearing Sites in Florida’s Largest Open-Water Estuary, Tampa Bay, Florida, USA

Although shell middens and mounds often occupy the same intertidal spaces as coastal wetlands, biophysical interactions between these cultural features and wetlands are under-investigated. To this end, our geoarchaeological and zooarchaeological research at three coastal archaeological sites within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuaries and coasts 2024-05, Vol.47 (3), p.637-655
Hauptverfasser: Rogers, Jaime A., Jackson, Kendal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although shell middens and mounds often occupy the same intertidal spaces as coastal wetlands, biophysical interactions between these cultural features and wetlands are under-investigated. To this end, our geoarchaeological and zooarchaeological research at three coastal archaeological sites within the Tampa Bay Estuary, USA, sought to understand the interactions between shell-bearing sites, sea-level rise, storms, and migrating wetland habitats. Percussion core transects document the accretion of mangrove peat atop intact shell midden, illustrating the ability of mangrove forests to encroach shell midden and preserve cultural material below. Landward wetland deposits are thicker and muddier than those along the seaward margin of the sites, suggesting that shell-bearing sites attenuate wave energy much like other shoreline stabilization structures. Differences in sedimentology, stratigraphy, and invertebrate species compositions highlight the variability in storm impacts between sites. Storm-driven depositional events are identified by medium-to-fine sand beds with high densities of fragmented shell and small intertidal zone snails. Geospatial analyses indicate that wetland encroachment is already occurring at 247 archaeological sites within the Tampa Bay Estuary. Approximately 100 additional archaeological sites currently located in upland habitats may provide topographic relief for migrating coastal wetlands in the future. We contend that shell middens and mounds constructed by Indigenous peoples are important components within estuarine mosaics, as they have been for millennia. We advocate for further collaboration between archaeologists and estuary managers and the inclusion of descendant communities to co-manage the future of their past.
ISSN:1559-2723
1559-2731
DOI:10.1007/s12237-024-01329-8