Gully stabilization and loess-platform protection against headward erosion
The Loess Plateau is highly susceptible to gully headward erosion, highlighting the urgent need for soil stabilization. In this study, a series of physical and mechanical properties, water physical properties and microstructure tests were carried out to explore the loess improvement for potential co...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2024, Vol.83 (2), p.65-65, Article 65 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Loess Plateau is highly susceptible to gully headward erosion, highlighting the urgent need for soil stabilization. In this study, a series of physical and mechanical properties, water physical properties and microstructure tests were carried out to explore the loess improvement for potential control of headward erosion in loess gullies. Experimental results reveal that the addition of the Consolid System to loess soil leads to an increase in the plastic limit and liquid limit of the soil, while the soil retains its characteristics as a type of low plasticity soil. The dry density of the stabilized loess soil decreases, while the unconfined compressive strength increases. Regarding the water-physical properties, the swelling and shrinkage properties of modified loess soil were significantly improved while the permeability coefficient slightly decrease. Furthermore, the surface energy decreased, resulting in increased water repellency, while the pore volume remains relatively unchanged. A recommended minimum mixing ratio of the Consolid System is 1.5% to resist water erosion. In conclusion, the implementation of the Consolid System not only enhances the strength of loess soil and its water repellency, but also preserves the advantageous water drainage characteristics inherent to loess soil. Consequently, loess soil stabilized by the Consolid System holds promising potential for applications in areas covered with loess soil. |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-023-11388-y |