Selective Facet Engineering of Ni12P5 Nanoparticle for Maximization of Electrocatalytic Oxidative Reaction of Biomass Chemicals
Electrocatalytic hydrogen generation is a prime research topic for the large-scale production of hydrogen fuel. High energy demanding oxygen evolution process impedes the production of H2 at low potentials. Conversion of biomass to value-added chemicals or fuels is appraised as an upcycling process,...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2024-05, Vol.12 (19), p.7374-7381 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrocatalytic hydrogen generation is a prime research topic for the large-scale production of hydrogen fuel. High energy demanding oxygen evolution process impedes the production of H2 at low potentials. Conversion of biomass to value-added chemicals or fuels is appraised as an upcycling process, which is advantageous for resource management. Coupling of hydrogen generation at the cathode with oxidative conversion of biomass to market-demanded chemicals at the anode is a sustainable approach to increase energy efficiency in hybrid electrolysis. For that purpose, Ni-based anode electrocatalysts are in the forefront for ease of formation of hypervalent NiIII species, at a mild anodic potential, which act as an oxidant to propagate the oxidation and dehydrogenation reactions. Herein, we synthesized Ni12P5 nanohexagon via kinetic stabilization of high index { 4 25 ̅ } facets and compared the electrocatalytic activity toward various biomass-derived platform chemicals oxidation with the thermodynamically stable Ni12P5 nanosphere. The Ni12P5 nanohexagon outperforms the current state-of-the-art catalysts regarding mass activity, product conversion, and Faradaic yield. Ease of formation of active species, faster charge transfer, and enhanced adsorption of substrates over { 4 25 ̅ } facets resulted in this superior activity. This shape-directing effects on Ni12P5 ensured potential advantage of 150 mV in hybrid electrolysis over water splitting reaction when ethanol was used as a substrate in a two-electrode electrolyzer cell. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.4c00269 |