Black carbon instrument responses to laboratory generated particles
Accurate measurement of black carbon (BC) particles is vital for climate models as well as air quality assessments. While the need for BC particle measurement has been recognized, standardization of instruments and procedures for ambient measurement is still underway. In this study, we used laborato...
Gespeichert in:
Veröffentlicht in: | Atmospheric pollution research 2024-05, Vol.15 (5), p.102088, Article 102088 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 102088 |
container_title | Atmospheric pollution research |
container_volume | 15 |
creator | Salo, Laura Saarnio, Karri Saarikoski, Sanna Teinilä, Kimmo Barreira, Luis M.F. Marjanen, Petteri Martikainen, Sampsa Keskinen, Helmi Mustonen, Katja Lepistö, Teemu Aakko-Saksa, Päivi Hakkarainen, Henri Pfeiffer, Tobias Jalava, Pasi Karjalainen, Panu Keskinen, Jorma Kuittinen, Niina Timonen, Hilkka Rönkkö, Topi |
description | Accurate measurement of black carbon (BC) particles is vital for climate models as well as air quality assessments. While the need for BC particle measurement has been recognized, standardization of instruments and procedures for ambient measurement is still underway. In this study, we used laboratory generated soot particles to assess nine instruments targeting BC mass concentration measurement. The measurement matrix included different BC concentrations (ranging from atmospheric levels to combustion emission levels), different particle coatings, two particle sources (gas burner and spark generator) and two dilution methods. The nine instruments included six different models: aethalometers AE33 and MA200, thermo-optical OC-EC analysis, multi-angle absorption photometer MAAP 5012, photoacoustic instrument MSS, and soot particle aerosol mass spectrometer SP-AMS. The main discrepancy we observed was that the SP-AMS results were systematically lower, approximately only half of the BC measured by other instruments. A portion of this is explained by particle losses in the aerodynamic lens of the SP-AMS and the parameters used in the data analysis. Some smaller discrepancies were identified for the other instruments, but overall, the median values from were within 25 % of each other. Instruments’ operation principles and covered concentration ranges need to be carefully considered especially in emission measurements where the aerosols can have high temporal variation as well as high BC concentrations. In general, the results can decrease the uncertainties in climate and air quality studies by providing tools for more accurate and comparable BC measurements and when the existing BC data is interpreted.
•Measured median BC values were within 25 % of each other.•Discrepancies were related to concentration and particle size ranges.•Spark-generated particles had higher Ångström exponents than gas burner particles.•Changing the dilution method did not alter instrument responses. |
doi_str_mv | 10.1016/j.apr.2024.102088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153611540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1309104224000539</els_id><sourcerecordid>3153611540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-b02e11d3929a7e2551464ec36db5c59a74e9f3b09354912b433939b4e2151003</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGp_gLc9etmayce2wZMWrULBS-8hyU4ldbtZk1TovzdlPXhyLvPB-w4zDyG3QOdAobnfz80Q54wyUXpGl8sLMgFOVQ1UsMs_9TWZpbSnJbiSC0YnZPXUGfdZORNt6CvfpxyPB-xzFTENoU-YqhyqztgQTQ7xVH1gj6XEthpMzN51mG7I1c50CWe_eUq2L8_b1Wu9eV-_rR43teNM5tpShgAtV0yZBTIpQTQCHW9aK50sM4Fqxy1VXAoFzArOFVdWIAMJ5eIpuRvXDjF8HTFlffDJYdeZHsMxaQ6SNwBSnKUwSl0MKUXc6SH6g4knDVSfkem9Lsj0GZkekRXPw-jB8sK3x6iT89g7bH1El3Ub_D_uHyaSco0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153611540</pqid></control><display><type>article</type><title>Black carbon instrument responses to laboratory generated particles</title><source>Alma/SFX Local Collection</source><creator>Salo, Laura ; Saarnio, Karri ; Saarikoski, Sanna ; Teinilä, Kimmo ; Barreira, Luis M.F. ; Marjanen, Petteri ; Martikainen, Sampsa ; Keskinen, Helmi ; Mustonen, Katja ; Lepistö, Teemu ; Aakko-Saksa, Päivi ; Hakkarainen, Henri ; Pfeiffer, Tobias ; Jalava, Pasi ; Karjalainen, Panu ; Keskinen, Jorma ; Kuittinen, Niina ; Timonen, Hilkka ; Rönkkö, Topi</creator><creatorcontrib>Salo, Laura ; Saarnio, Karri ; Saarikoski, Sanna ; Teinilä, Kimmo ; Barreira, Luis M.F. ; Marjanen, Petteri ; Martikainen, Sampsa ; Keskinen, Helmi ; Mustonen, Katja ; Lepistö, Teemu ; Aakko-Saksa, Päivi ; Hakkarainen, Henri ; Pfeiffer, Tobias ; Jalava, Pasi ; Karjalainen, Panu ; Keskinen, Jorma ; Kuittinen, Niina ; Timonen, Hilkka ; Rönkkö, Topi</creatorcontrib><description>Accurate measurement of black carbon (BC) particles is vital for climate models as well as air quality assessments. While the need for BC particle measurement has been recognized, standardization of instruments and procedures for ambient measurement is still underway. In this study, we used laboratory generated soot particles to assess nine instruments targeting BC mass concentration measurement. The measurement matrix included different BC concentrations (ranging from atmospheric levels to combustion emission levels), different particle coatings, two particle sources (gas burner and spark generator) and two dilution methods. The nine instruments included six different models: aethalometers AE33 and MA200, thermo-optical OC-EC analysis, multi-angle absorption photometer MAAP 5012, photoacoustic instrument MSS, and soot particle aerosol mass spectrometer SP-AMS. The main discrepancy we observed was that the SP-AMS results were systematically lower, approximately only half of the BC measured by other instruments. A portion of this is explained by particle losses in the aerodynamic lens of the SP-AMS and the parameters used in the data analysis. Some smaller discrepancies were identified for the other instruments, but overall, the median values from were within 25 % of each other. Instruments’ operation principles and covered concentration ranges need to be carefully considered especially in emission measurements where the aerosols can have high temporal variation as well as high BC concentrations. In general, the results can decrease the uncertainties in climate and air quality studies by providing tools for more accurate and comparable BC measurements and when the existing BC data is interpreted.
•Measured median BC values were within 25 % of each other.•Discrepancies were related to concentration and particle size ranges.•Spark-generated particles had higher Ångström exponents than gas burner particles.•Changing the dilution method did not alter instrument responses.</description><identifier>ISSN: 1309-1042</identifier><identifier>EISSN: 1309-1042</identifier><identifier>DOI: 10.1016/j.apr.2024.102088</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>absorption ; AE33 ; aerodynamics ; aerosols ; air pollution ; air quality ; carbon ; climate ; combustion ; MAAP ; MSS ; photometers ; Soot ; SP-AMS ; spectrometers ; temporal variation</subject><ispartof>Atmospheric pollution research, 2024-05, Vol.15 (5), p.102088, Article 102088</ispartof><rights>2024 Turkish National Committee for Air Pollution Research and Control</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-b02e11d3929a7e2551464ec36db5c59a74e9f3b09354912b433939b4e2151003</cites><orcidid>0000-0001-8085-3852 ; 0000-0002-7987-7985 ; 0000-0003-0196-2140 ; 0000-0002-8423-8934 ; 0009-0001-8050-975X ; 0000-0003-1102-5329 ; 0000-0003-2995-0889 ; 0000-0003-3614-0542 ; 0000-0002-8388-1610 ; 0000-0003-0260-795X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Salo, Laura</creatorcontrib><creatorcontrib>Saarnio, Karri</creatorcontrib><creatorcontrib>Saarikoski, Sanna</creatorcontrib><creatorcontrib>Teinilä, Kimmo</creatorcontrib><creatorcontrib>Barreira, Luis M.F.</creatorcontrib><creatorcontrib>Marjanen, Petteri</creatorcontrib><creatorcontrib>Martikainen, Sampsa</creatorcontrib><creatorcontrib>Keskinen, Helmi</creatorcontrib><creatorcontrib>Mustonen, Katja</creatorcontrib><creatorcontrib>Lepistö, Teemu</creatorcontrib><creatorcontrib>Aakko-Saksa, Päivi</creatorcontrib><creatorcontrib>Hakkarainen, Henri</creatorcontrib><creatorcontrib>Pfeiffer, Tobias</creatorcontrib><creatorcontrib>Jalava, Pasi</creatorcontrib><creatorcontrib>Karjalainen, Panu</creatorcontrib><creatorcontrib>Keskinen, Jorma</creatorcontrib><creatorcontrib>Kuittinen, Niina</creatorcontrib><creatorcontrib>Timonen, Hilkka</creatorcontrib><creatorcontrib>Rönkkö, Topi</creatorcontrib><title>Black carbon instrument responses to laboratory generated particles</title><title>Atmospheric pollution research</title><description>Accurate measurement of black carbon (BC) particles is vital for climate models as well as air quality assessments. While the need for BC particle measurement has been recognized, standardization of instruments and procedures for ambient measurement is still underway. In this study, we used laboratory generated soot particles to assess nine instruments targeting BC mass concentration measurement. The measurement matrix included different BC concentrations (ranging from atmospheric levels to combustion emission levels), different particle coatings, two particle sources (gas burner and spark generator) and two dilution methods. The nine instruments included six different models: aethalometers AE33 and MA200, thermo-optical OC-EC analysis, multi-angle absorption photometer MAAP 5012, photoacoustic instrument MSS, and soot particle aerosol mass spectrometer SP-AMS. The main discrepancy we observed was that the SP-AMS results were systematically lower, approximately only half of the BC measured by other instruments. A portion of this is explained by particle losses in the aerodynamic lens of the SP-AMS and the parameters used in the data analysis. Some smaller discrepancies were identified for the other instruments, but overall, the median values from were within 25 % of each other. Instruments’ operation principles and covered concentration ranges need to be carefully considered especially in emission measurements where the aerosols can have high temporal variation as well as high BC concentrations. In general, the results can decrease the uncertainties in climate and air quality studies by providing tools for more accurate and comparable BC measurements and when the existing BC data is interpreted.
•Measured median BC values were within 25 % of each other.•Discrepancies were related to concentration and particle size ranges.•Spark-generated particles had higher Ångström exponents than gas burner particles.•Changing the dilution method did not alter instrument responses.</description><subject>absorption</subject><subject>AE33</subject><subject>aerodynamics</subject><subject>aerosols</subject><subject>air pollution</subject><subject>air quality</subject><subject>carbon</subject><subject>climate</subject><subject>combustion</subject><subject>MAAP</subject><subject>MSS</subject><subject>photometers</subject><subject>Soot</subject><subject>SP-AMS</subject><subject>spectrometers</subject><subject>temporal variation</subject><issn>1309-1042</issn><issn>1309-1042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGp_gLc9etmayce2wZMWrULBS-8hyU4ldbtZk1TovzdlPXhyLvPB-w4zDyG3QOdAobnfz80Q54wyUXpGl8sLMgFOVQ1UsMs_9TWZpbSnJbiSC0YnZPXUGfdZORNt6CvfpxyPB-xzFTENoU-YqhyqztgQTQ7xVH1gj6XEthpMzN51mG7I1c50CWe_eUq2L8_b1Wu9eV-_rR43teNM5tpShgAtV0yZBTIpQTQCHW9aK50sM4Fqxy1VXAoFzArOFVdWIAMJ5eIpuRvXDjF8HTFlffDJYdeZHsMxaQ6SNwBSnKUwSl0MKUXc6SH6g4knDVSfkem9Lsj0GZkekRXPw-jB8sK3x6iT89g7bH1El3Ub_D_uHyaSco0</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Salo, Laura</creator><creator>Saarnio, Karri</creator><creator>Saarikoski, Sanna</creator><creator>Teinilä, Kimmo</creator><creator>Barreira, Luis M.F.</creator><creator>Marjanen, Petteri</creator><creator>Martikainen, Sampsa</creator><creator>Keskinen, Helmi</creator><creator>Mustonen, Katja</creator><creator>Lepistö, Teemu</creator><creator>Aakko-Saksa, Päivi</creator><creator>Hakkarainen, Henri</creator><creator>Pfeiffer, Tobias</creator><creator>Jalava, Pasi</creator><creator>Karjalainen, Panu</creator><creator>Keskinen, Jorma</creator><creator>Kuittinen, Niina</creator><creator>Timonen, Hilkka</creator><creator>Rönkkö, Topi</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-8085-3852</orcidid><orcidid>https://orcid.org/0000-0002-7987-7985</orcidid><orcidid>https://orcid.org/0000-0003-0196-2140</orcidid><orcidid>https://orcid.org/0000-0002-8423-8934</orcidid><orcidid>https://orcid.org/0009-0001-8050-975X</orcidid><orcidid>https://orcid.org/0000-0003-1102-5329</orcidid><orcidid>https://orcid.org/0000-0003-2995-0889</orcidid><orcidid>https://orcid.org/0000-0003-3614-0542</orcidid><orcidid>https://orcid.org/0000-0002-8388-1610</orcidid><orcidid>https://orcid.org/0000-0003-0260-795X</orcidid></search><sort><creationdate>202405</creationdate><title>Black carbon instrument responses to laboratory generated particles</title><author>Salo, Laura ; Saarnio, Karri ; Saarikoski, Sanna ; Teinilä, Kimmo ; Barreira, Luis M.F. ; Marjanen, Petteri ; Martikainen, Sampsa ; Keskinen, Helmi ; Mustonen, Katja ; Lepistö, Teemu ; Aakko-Saksa, Päivi ; Hakkarainen, Henri ; Pfeiffer, Tobias ; Jalava, Pasi ; Karjalainen, Panu ; Keskinen, Jorma ; Kuittinen, Niina ; Timonen, Hilkka ; Rönkkö, Topi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-b02e11d3929a7e2551464ec36db5c59a74e9f3b09354912b433939b4e2151003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>AE33</topic><topic>aerodynamics</topic><topic>aerosols</topic><topic>air pollution</topic><topic>air quality</topic><topic>carbon</topic><topic>climate</topic><topic>combustion</topic><topic>MAAP</topic><topic>MSS</topic><topic>photometers</topic><topic>Soot</topic><topic>SP-AMS</topic><topic>spectrometers</topic><topic>temporal variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salo, Laura</creatorcontrib><creatorcontrib>Saarnio, Karri</creatorcontrib><creatorcontrib>Saarikoski, Sanna</creatorcontrib><creatorcontrib>Teinilä, Kimmo</creatorcontrib><creatorcontrib>Barreira, Luis M.F.</creatorcontrib><creatorcontrib>Marjanen, Petteri</creatorcontrib><creatorcontrib>Martikainen, Sampsa</creatorcontrib><creatorcontrib>Keskinen, Helmi</creatorcontrib><creatorcontrib>Mustonen, Katja</creatorcontrib><creatorcontrib>Lepistö, Teemu</creatorcontrib><creatorcontrib>Aakko-Saksa, Päivi</creatorcontrib><creatorcontrib>Hakkarainen, Henri</creatorcontrib><creatorcontrib>Pfeiffer, Tobias</creatorcontrib><creatorcontrib>Jalava, Pasi</creatorcontrib><creatorcontrib>Karjalainen, Panu</creatorcontrib><creatorcontrib>Keskinen, Jorma</creatorcontrib><creatorcontrib>Kuittinen, Niina</creatorcontrib><creatorcontrib>Timonen, Hilkka</creatorcontrib><creatorcontrib>Rönkkö, Topi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Atmospheric pollution research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salo, Laura</au><au>Saarnio, Karri</au><au>Saarikoski, Sanna</au><au>Teinilä, Kimmo</au><au>Barreira, Luis M.F.</au><au>Marjanen, Petteri</au><au>Martikainen, Sampsa</au><au>Keskinen, Helmi</au><au>Mustonen, Katja</au><au>Lepistö, Teemu</au><au>Aakko-Saksa, Päivi</au><au>Hakkarainen, Henri</au><au>Pfeiffer, Tobias</au><au>Jalava, Pasi</au><au>Karjalainen, Panu</au><au>Keskinen, Jorma</au><au>Kuittinen, Niina</au><au>Timonen, Hilkka</au><au>Rönkkö, Topi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black carbon instrument responses to laboratory generated particles</atitle><jtitle>Atmospheric pollution research</jtitle><date>2024-05</date><risdate>2024</risdate><volume>15</volume><issue>5</issue><spage>102088</spage><pages>102088-</pages><artnum>102088</artnum><issn>1309-1042</issn><eissn>1309-1042</eissn><abstract>Accurate measurement of black carbon (BC) particles is vital for climate models as well as air quality assessments. While the need for BC particle measurement has been recognized, standardization of instruments and procedures for ambient measurement is still underway. In this study, we used laboratory generated soot particles to assess nine instruments targeting BC mass concentration measurement. The measurement matrix included different BC concentrations (ranging from atmospheric levels to combustion emission levels), different particle coatings, two particle sources (gas burner and spark generator) and two dilution methods. The nine instruments included six different models: aethalometers AE33 and MA200, thermo-optical OC-EC analysis, multi-angle absorption photometer MAAP 5012, photoacoustic instrument MSS, and soot particle aerosol mass spectrometer SP-AMS. The main discrepancy we observed was that the SP-AMS results were systematically lower, approximately only half of the BC measured by other instruments. A portion of this is explained by particle losses in the aerodynamic lens of the SP-AMS and the parameters used in the data analysis. Some smaller discrepancies were identified for the other instruments, but overall, the median values from were within 25 % of each other. Instruments’ operation principles and covered concentration ranges need to be carefully considered especially in emission measurements where the aerosols can have high temporal variation as well as high BC concentrations. In general, the results can decrease the uncertainties in climate and air quality studies by providing tools for more accurate and comparable BC measurements and when the existing BC data is interpreted.
•Measured median BC values were within 25 % of each other.•Discrepancies were related to concentration and particle size ranges.•Spark-generated particles had higher Ångström exponents than gas burner particles.•Changing the dilution method did not alter instrument responses.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apr.2024.102088</doi><orcidid>https://orcid.org/0000-0001-8085-3852</orcidid><orcidid>https://orcid.org/0000-0002-7987-7985</orcidid><orcidid>https://orcid.org/0000-0003-0196-2140</orcidid><orcidid>https://orcid.org/0000-0002-8423-8934</orcidid><orcidid>https://orcid.org/0009-0001-8050-975X</orcidid><orcidid>https://orcid.org/0000-0003-1102-5329</orcidid><orcidid>https://orcid.org/0000-0003-2995-0889</orcidid><orcidid>https://orcid.org/0000-0003-3614-0542</orcidid><orcidid>https://orcid.org/0000-0002-8388-1610</orcidid><orcidid>https://orcid.org/0000-0003-0260-795X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1309-1042 |
ispartof | Atmospheric pollution research, 2024-05, Vol.15 (5), p.102088, Article 102088 |
issn | 1309-1042 1309-1042 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153611540 |
source | Alma/SFX Local Collection |
subjects | absorption AE33 aerodynamics aerosols air pollution air quality carbon climate combustion MAAP MSS photometers Soot SP-AMS spectrometers temporal variation |
title | Black carbon instrument responses to laboratory generated particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20carbon%20instrument%20responses%20to%20laboratory%20generated%20particles&rft.jtitle=Atmospheric%20pollution%20research&rft.au=Salo,%20Laura&rft.date=2024-05&rft.volume=15&rft.issue=5&rft.spage=102088&rft.pages=102088-&rft.artnum=102088&rft.issn=1309-1042&rft.eissn=1309-1042&rft_id=info:doi/10.1016/j.apr.2024.102088&rft_dat=%3Cproquest_cross%3E3153611540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153611540&rft_id=info:pmid/&rft_els_id=S1309104224000539&rfr_iscdi=true |