Black carbon instrument responses to laboratory generated particles

Accurate measurement of black carbon (BC) particles is vital for climate models as well as air quality assessments. While the need for BC particle measurement has been recognized, standardization of instruments and procedures for ambient measurement is still underway. In this study, we used laborato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric pollution research 2024-05, Vol.15 (5), p.102088, Article 102088
Hauptverfasser: Salo, Laura, Saarnio, Karri, Saarikoski, Sanna, Teinilä, Kimmo, Barreira, Luis M.F., Marjanen, Petteri, Martikainen, Sampsa, Keskinen, Helmi, Mustonen, Katja, Lepistö, Teemu, Aakko-Saksa, Päivi, Hakkarainen, Henri, Pfeiffer, Tobias, Jalava, Pasi, Karjalainen, Panu, Keskinen, Jorma, Kuittinen, Niina, Timonen, Hilkka, Rönkkö, Topi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate measurement of black carbon (BC) particles is vital for climate models as well as air quality assessments. While the need for BC particle measurement has been recognized, standardization of instruments and procedures for ambient measurement is still underway. In this study, we used laboratory generated soot particles to assess nine instruments targeting BC mass concentration measurement. The measurement matrix included different BC concentrations (ranging from atmospheric levels to combustion emission levels), different particle coatings, two particle sources (gas burner and spark generator) and two dilution methods. The nine instruments included six different models: aethalometers AE33 and MA200, thermo-optical OC-EC analysis, multi-angle absorption photometer MAAP 5012, photoacoustic instrument MSS, and soot particle aerosol mass spectrometer SP-AMS. The main discrepancy we observed was that the SP-AMS results were systematically lower, approximately only half of the BC measured by other instruments. A portion of this is explained by particle losses in the aerodynamic lens of the SP-AMS and the parameters used in the data analysis. Some smaller discrepancies were identified for the other instruments, but overall, the median values from were within 25 % of each other. Instruments’ operation principles and covered concentration ranges need to be carefully considered especially in emission measurements where the aerosols can have high temporal variation as well as high BC concentrations. In general, the results can decrease the uncertainties in climate and air quality studies by providing tools for more accurate and comparable BC measurements and when the existing BC data is interpreted. •Measured median BC values were within 25 % of each other.•Discrepancies were related to concentration and particle size ranges.•Spark-generated particles had higher Ångström exponents than gas burner particles.•Changing the dilution method did not alter instrument responses.
ISSN:1309-1042
1309-1042
DOI:10.1016/j.apr.2024.102088