In Vitro Effects of Zirconia Nanoparticles: Uptake, Genotoxicity, and Mutagenicity in V-79 cells

Zirconia nanoparticles are used in various industrial and biomedical applications such as dental implants, thermal barrier sprays, and fuel cells. The interaction of nanoparticles with the environment and humans is inevitable. Despite the enormous application potential of these nanoparticles, there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological trace element research 2024-03, Vol.202 (3), p.927-940
Hauptverfasser: Mourya, Durgesh, Dubey, Kavita, Jha, Shambhavi, Maurya, Renuka, Pandey, Alok Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zirconia nanoparticles are used in various industrial and biomedical applications such as dental implants, thermal barrier sprays, and fuel cells. The interaction of nanoparticles with the environment and humans is inevitable. Despite the enormous application potential of these nanoparticles, there are still some gaps in the literature regarding potential toxicological mechanisms and the genotoxicity of zirconia nanoparticles. The lung is one of the main exposure routes to nanomaterials; therefore, the present study was designed to determine the genotoxic and mutagenic effect of zirconia NPs in V-79 lung cells. Zirconia nanoparticles showed significant internalization in cells at 100 μg/mL and 150 μg/mL concentrations. Zirconia nanoparticles showed low cytotoxicity and were found to generate ROS in V-79 cells. In alkaline comet assay, zirconia nanoparticles (10 μg/mL, 50 μg/mL, and 100 μg/mL) exposed cells exhibited significant DNA strand breaks, while the neutral comet assay, which was used for double-strand break assessment, only revealed significant damage at 100 μg/mL. Chromosomal aberration induced by zirconia nanoparticles mainly resulted in the generation of gaps, few fragments, and breaks which signifies the low clastogenic activity of these nanoparticles in the V-79 cell line. In MN assay, zirconia nanoparticles resulted in no significant micronuclei induction at any given concentration. In the HPRT mutation assay, the particle shows a dose-dependent increase in the mutant frequency. It is evident from the result that zirconia nanoparticles cause dose-dependent cytotoxicity and genotoxicity, but still, more studies are needed to evaluate the clastogenic potential and the possible mechanism involved.
ISSN:0163-4984
1559-0720
DOI:10.1007/s12011-023-03739-4