Synergistic and antibiofilm activity of DNase I and glucose oxidase loaded chitosan nanoparticles against dual-species biofilms of Listeria monocytogenes and Salmonella
Salmonella and Listeria monocytogenes are two of the most common foodborne pathogens in the food industry. They form dual-species biofilms, which have a higher sensitivity to antimicrobial treatment and a greater microbial adhesion. In this experiment, we loaded DNase I and glucose oxidase (GOX) on...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-06, Vol.269 (Pt 2), p.131943, Article 131943 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Salmonella and Listeria monocytogenes are two of the most common foodborne pathogens in the food industry. They form dual-species biofilms, which have a higher sensitivity to antimicrobial treatment and a greater microbial adhesion. In this experiment, we loaded DNase I and glucose oxidase (GOX) on chitosan nanoparticles (CSNPs) to explore their inhibitory effects on and disruption of dual-species biofilms of Salmonella enterica and L. monocytogenes. Transmission electron microscopy (TEM) showed that CSNP-DNase-GOX and CSNPs were spherical in shape. CSNP-DNase-GOX was shifted and altered compared to the infrared peaks of CSNPs. CSNPs loaded with DNase I and GOX showed an increase in the particle size and an alteration in the polydispersity index (PDI) and the zeta potential. Compared to free DNase I or GOX, DNase I and GOX loaded on CSNPs had higher stability at different temperatures. CSNP-DNase-GOX was more effective in inhibiting dual-species biofilms than CSNP-GOX. Scanning electron microscopy (SEM) and fluorescence microscopy were used to observe the structure of the biofilm, which further illustrated that CSNP-DNase-GOX disrupted the dual-species biofilms of S. enterica and L. monocytogenes.
•Loading of DNase I and glucose oxidase onto chitosan nanoparticles and characterization of nanoparticles.•DNase I and glucose oxidase were loaded on chitosan nanoparticles to explore their anti-biofilm effects against Salmonella and Listeria monocytogenes.•This experiment provides a new idea for the treatment of drug resistant strains of Salmonella and Listeria monocytogenes. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.131943 |