Unraveling the effects and mechanisms of microplastics on anaerobic fermentation: Exploring microbial communities and metabolic pathways

To investigate the effects of microplastics (MPs) on hydrolysis, acidification and microbial characteristics during waste activated sludge (WAS) anaerobic fermentation process, five different kinds of MPs were added into the WAS fermentation system and results indicated that, compared to the control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2024-08, Vol.939, p.173518, Article 173518
Hauptverfasser: Zhang, Shuai, Huang, Xiao, Dong, Wenyi, Li, Zhiying, Gao, JingSi, Zhou, Guorun, Teng, Xindong, Cao, Kai, Zheng, Zhihao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the effects of microplastics (MPs) on hydrolysis, acidification and microbial characteristics during waste activated sludge (WAS) anaerobic fermentation process, five different kinds of MPs were added into the WAS fermentation system and results indicated that, compared to the control group, the addition of polyvinyl chloride (PVC)-MPs exhibited the least inhibition on volatile fatty acids (VFAs), reducing them by 13.49 %. Conversely, polyethylene (PE)-MPs resulted in the greatest inhibition, with a reduction of 29.57 %. MPs, while accelerated the dissolution of WAS that evidenced by an increase of lactate dehydrogenase (LDH) release, concurrently inhibited the activities of relevant hydrolytic enzymes (α-Glucosidase, protease). For microbial mechanisms, MPs addition affected the proliferation of key microorganisms (norank_f_Bacteroidetes_vadinHA17, Ottowia, and Propioniclava) and reduced the abundance of genes associated with hydrolysis and acidification (pfkb, gpmI, ilvE, and aces). Additionally, MPs decreased the levels of key hydrolytic and acidogenic enzymes to inhibit hydrolysis and acidification processes. This research provides a basis for understanding and unveils impact mechanisms of the impact of MPs on sludge anaerobic fermentation. [Display omitted] •MPs promoted sludge dissolution and organic matter release.•Different types of MPs inhibited the enrichment of associated functional bacteria.•MPs altered metabolic pathways to inhibit hydrolysis, acidification.•Inhibition of enzymes and genes involved in the metabolism of VFAs
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.173518