Unveiling the Reaction Mechanism of Nitrate Reduction to Ammonia Over Cobalt-Based Electrocatalysts
Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-05, Vol.146 (19), p.12976-12983 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide potential range are still full of controversy. Here, we adopt CoP, Co, and Co3O4 as model materials to solve these issues. CoP evolves into a core@shell structured CoP@Co before NRA. For CoP@Co and Co catalysts, a three-step relay mechanism is carried out over superficial dynamical Coδ+ active species under low overpotential, while a continuous hydrogenation mechanism from nitrate to ammonia is unveiled over superficial Co species under high overpotential. In comparison, Co3O4 species are stable and steadily catalyze nitrate hydrogenation to ammonia across a wide potential range. As a result, CoP@Co and Co exhibit much higher NRA activity than Co3O4 especially under a low overpotential. Moreover, the NRA performance of CoP@Co is higher than Co although they experience the same reaction mechanism. A series of characterizations clarify the reason for performance enhancement highlighting that CoP core donates abundant electrons to superficial active species, leading to the generation of more active hydrogen for the reduction of nitrogen-containing intermediates. |
---|---|
ISSN: | 0002-7863 1520-5126 1520-5126 |
DOI: | 10.1021/jacs.3c13517 |