Arbuscular mycorrhizal fungi offset NH3 emissions in temperate meadow soil under simulated warming and nitrogen deposition

Most soil ammonia (NH3) emissions originate from soil nitrogen (N) that has been in the form of exchangeable ammonium. Emitted NH3 not only induces nutrient loss but also has adverse effects on the cycling of N and accelerates global warming. There is evidence that arbuscular mycorrhizal (AM) fungi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management 2024-03, Vol.354, p.120239-120239, Article 120239
Hauptverfasser: Cui, Nan, Veresoglou, Stavros, Tian, Yibo, Guo, Rui, Zhang, Lei, Jiang, Li, Kang, Furong, Yuan, Weizhe, Hou, Dan, Shi, Lianxuan, Guo, Jixun, Sun, Mingzhou, Zhang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most soil ammonia (NH3) emissions originate from soil nitrogen (N) that has been in the form of exchangeable ammonium. Emitted NH3 not only induces nutrient loss but also has adverse effects on the cycling of N and accelerates global warming. There is evidence that arbuscular mycorrhizal (AM) fungi can alleviate N loss by reducing N2O emissions in N-limited ecosystems, however, some studies have also found that global changes, such as warming and N deposition, can affect the growth and development of AM fungi and alter their functionality. Up to now, the impact of AM fungi on NH3 emissions, and whether global changes reduce the AM fungi's contribution to NH3 emissions reduction, has remained unclear. In this study, we examined how warming, N addition, and AM fungi alter NH3 emissions from high pH saline soils typical of a temperate meadow through a controlled microscopic experiment. The results showed that warming significantly increased soil NH3 emissions, but N addition and combined warming plus N addition had no impact. Inoculations with AM fungi strongly reduced NH3 emissions both under warming and N addition, but AM fungi effects were more pronounced under warming than following N addition. Inoculation with AM fungi reduced soil NH4+-N content and soil pH, and increased plant N content and soil net N mineralization rate while increasing the abundance of ammonia-oxidizing bacterial (AOB) gene. Structural equation modeling (SEM) shows that the regulation of NH3 emissions by AM fungi may be related to soil NH4+-N content and soil pH. These findings highlight that AM fungi can reduce N loss in the form of NH3 by increasing N turnover and uptake under global changes; thus, AM fungi play a vital role in alleviating the aggravation of N loss caused by global changes and in mitigating environmental pollution in the future. •In high pH meadow soil, N addition (10 g N m−2) didn't affect NH3 emissions, but warming (+3 °C) increased it.•AM fungi strongly reduced NH3 emissions, especially amplified under warming rather than N additions.•AM fungi mitigate NH3 loss by increasing N turnover and uptake under global changes.
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2024.120239