“Micro-to-nano”: Reengineering of jute for constructing cellulose nanofibers as a next-generation biomaterial

Micro-to-nano transformation can make a material unique. This research uses jute microfiber to extract Holo and Alpha forms of cellulose, which are later attempted to electrospun into superfine nanofibers (NFs). Initial investigation of morphological, physicochemical, crystallographic, and thermal p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-03, Vol.261 (Pt 2), p.129872-129872, Article 129872
Hauptverfasser: Haider, Md. Kaiser, Davood, Kharaghani, Kim, Ick Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Micro-to-nano transformation can make a material unique. This research uses jute microfiber to extract Holo and Alpha forms of cellulose, which are later attempted to electrospun into superfine nanofibers (NFs). Initial investigation of morphological, physicochemical, crystallographic, and thermal properties confirmed successful synthesis of Holo and Alpha-cellulose (H/A-cellulose). Afterwards, the electrospinnable concentration of H/A-cellulose was optimized and their bead-free ultrafine NFs in the range of 109–145 nm were fabricated. FTIR analysis confirmed the source composition in Holo and Alpha CNF with the partial formation of trifluoroacetyl esters. Alpha CNF exhibited better structural integrity despite the crystallinity and thermal stability deteriorated in both Holo and Alpha CNF. Both Holo and Alpha CNF exhibited adequate mechanical performance and liquid uptake properties. Alpha CNF showed better morphological stability in organic solvents and slower biodegradation than Holo CNF. Subsequent investigation revealed that both Holo and Alpha CNF didn't exhibit cytotoxic effects on COS-7 cells and above 90 % of cells were viable in contact with both CNF. Significant proliferation and attachment of COS-7 cells were noticed within 7 days of incubation with the prepared CNF. Our findings revealed that jute-extracted cellulose can be a viable and potential source for constructing cellulose-based advanced nano-biomaterials. Graphical representation of the scaffold fabrication. [Display omitted] •Extraction of Holo and Alpha-cellulose from jute fiber•Fabrication of Holo and Alpha CNF via electrospinning•Alpha CNF was more structurally stable than Holo CNF.•Holo CNF and Alpha CNF have adequate surface-wetting and liquid uptake properties.•Both Holo CNF and Alpha CNF were non-toxic against COS-7 cells and favored excellent cell proliferation and attachment.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2024.129872