Qualitative and quantitative assessment of diatom deformities and protoplasmic condition under metal and metalloid stress
Metals and metalloids are toxic, persistent, and non-biodegradable and can be biomagnified (e.g., Hg), and therefore pose a serious threat to the algal flora of aquatic ecosystems. This laboratory study tested the effects of metals (Zn, Fe, and Hg) and a metalloid (As) on the cell wall morphology...
Gespeichert in:
Veröffentlicht in: | Protoplasma 2023-11, Vol.260 (6), p.1501-1513 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: |
Metals and metalloids are toxic, persistent, and non-biodegradable and can be biomagnified (e.g., Hg), and therefore pose a serious threat to the algal flora of aquatic ecosystems. This laboratory study tested the effects of metals (Zn, Fe, and Hg) and a metalloid (As) on the cell wall morphology and protoplasmic content of living cells of six widespread diatom genera over 28 days. Diatoms exposed to Zn and Fe had a higher frequency of deformed diatom frustules (> 1%) compared to the As, Hg, and control treatments ( Fe > Hg≈As. Deformities were more frequent in
Achnanthes
and
Diploneis
(adnate forms) than in the motile genera of
Nitzschia
and
Navicula
. The correlation between the % healthy diatoms and % deformities in all six genera showed a negative relationship with the integrity of protoplasmic content (i.e., greater alteration in protoplasmic content was associated with greater frustule deformation). We conclude that diatom deformities can be a good indicator of metal and metalloid stress in waterbodies and are very useful in the rapid biomonitoring of aquatic ecosystems.
Graphical Abstract |
---|---|
ISSN: | 0033-183X 1615-6102 |
DOI: | 10.1007/s00709-023-01864-4 |