Detection and Analysis of Genes Affecting the Number of Thoracic Vertebrae in Licha Black Pigs

The number of thoracic vertebrae (NTV) in pigs is an important economic trait that significantly influences pork production. While the Licha black pig is a well-known Chinese pig breed with multiple thoracic vertebrae, the genetic mechanism is still unknown. Here, we performed a selective signal ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2024-04, Vol.15 (4), p.477
Hauptverfasser: Wang, Yuan, Wang, Min, He, Xiaojin, Dong, Ruilan, Liu, Hongjiang, Yu, Guanghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The number of thoracic vertebrae (NTV) in pigs is an important economic trait that significantly influences pork production. While the Licha black pig is a well-known Chinese pig breed with multiple thoracic vertebrae, the genetic mechanism is still unknown. Here, we performed a selective signal analysis on the genome of Licha black pigs, comparing individuals with 15 NTV versus those with 16 NTV to better understand functional genes associated with NTV. A total of 2265 selection signal regions were detected across the genome, including 527 genes and 1073 QTL that overlapped with the selection signal regions. Functional enrichment analysis revealed that and genes were involved in biological processes such as bone morphogenesis and Wnt protein binding. Furthermore, three genes, , , and , associated with osteoblast differentiation and bone formation, were located within or close to the QTL related to bone development and vertebrae number. These five genes were hypothesized to be potential candidates for regulating the NTV trait in Licha black pigs. Our findings revealed several candidate genes that play crucial roles in NTV regulation and provide a theoretical foundation to understand the genetic mechanism of the NTV trait in pig breeding.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes15040477