Biomimetic Electronic Skin Based on a Stretchable Ionogel Mechanoreceptor Composed of Crumpled Conductive Rubber Electrodes for Synchronous Strain, Pressure, and Temperature Detection
Electronic skin (e-skin) is showing a huge potential in human–computer interaction, intelligent robots, human health, motion monitoring, etc. However, it is still challenging for e-skin to realize distinguishable detection of stretching strain, vertical pressure, and temperature through a simple non...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-04, Vol.16 (16), p.21341-21355 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electronic skin (e-skin) is showing a huge potential in human–computer interaction, intelligent robots, human health, motion monitoring, etc. However, it is still challenging for e-skin to realize distinguishable detection of stretching strain, vertical pressure, and temperature through a simple noncoupling structure design. Here, a stretchable multimodal biomimetic e-skin was fabricated by integrating layer-by-layer self-assembled crumpled reduced graphene oxide/multiwalled carbon nanotubes film on natural rubber (RGO/MWCNTs@NR) as stretchable conductive electrodes and polyacrylamide/NaCl ionogel as a dielectric layer into an ionotropic capacitive mechanoreceptor. Unlike natural skin receptors, the sandwich-like stretchable ionogel mechanoreceptor possessed a distinct ionotropic capacitive behavior for strain and pressure detection. The results showed that the biomimetic e-skin displayed a negative capacitance change with superior stretchability (0–300%) and a high gauge factor of 0.27 in 180–300% strain, while exhibiting a normal positive piezo-capacitance behavior in vertical pressure range of 0–15 kPa with a maximal sensitivity of 1.759 kPa–1. Based on this feature, the biomimetic e-skin showed an excellent synchronous detection capability of planar strain and vertical pressure in practical wearable applications such as gesture recognition and grasping movement detection without a complicated mathematical or signal decoupling process. In addition, the biomimetic e-skin exhibited a quantifiable linear responsiveness to temperature from 20–90 °C with a temperature coefficient of 0.55%/°C. These intriguing properties gave the biomimetic e-skin the ability to perform a complete function similar to natural skin but beyond its performance for future wearable devices and artificial intelligence devices. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c01899 |