Milk exosomal microRNA profiling identified miR-375 and miR-199-5p for regulation of immune response during subclinical mastitis of crossbred cattle

Background The dairy industry has experienced significant economic losses as a result of mastitis, an inflammatory disease of cows, including both subclinical and clinical cases. Milk exosome microRNAs have gained attention due to their stable and selective wrapping nature, offering potential for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology reports 2024-12, Vol.51 (1), p.59-59, Article 59
Hauptverfasser: Mahala, Sudarshan, Kumar, Amit, Pandey, Hari Om, Saxena, Shikha, Khanna, Shivani, Kumar, Manoj, Kumar, Deepak, De, Ujjwal Kumar, Pandey, Ashwni Kumar, Dutt, Triveni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background The dairy industry has experienced significant economic losses as a result of mastitis, an inflammatory disease of cows, including both subclinical and clinical cases. Milk exosome microRNAs have gained attention due to their stable and selective wrapping nature, offering potential for the prognosis and diagnosis of bovine mastitis, the most common pathological condition of the mammary gland. Methods and results  In the present investigation, the microRNA profile of milk exosomes was explored using high-throughput small RNA sequencing data in sub-clinical mastitic and healthy crossbred Vrindavani cattle. In both groups, 349 microRNAs were identified, with 238 (68.19%) microRNAs co-expressed; however, 35 and 76 distinct microRNAs were found in subclinical mastitic and healthy cattle, respectively. Differential expression analysis revealed 11 microRNAs upregulated, and 18 microRNAs were downregulated in sub-clinical mastitic cattle. The functional annotation of the target genes of differentially expressed known and novel microRNAs including bta-miR-375, bta-miR-199-5p and bta-miR-12030 reveals their involvement in the regulation of immune response and inflammatory mechanisms and could be involved in development of mastitis. Conclusions The analysis of milk exosomal miRNAs cargos hold great promise as an approach to study the underlying molecular mechanisms associated with mastitis in high milk producing dairy cattle. Concurrently, the significantly downregulated miR-375 may upregulate key target genes, including CTLA4 , IHH , IRF1 , and IL7R . These genes are negative regulators of immune response pathways, which could be associated with impaired inflammatory mechanisms in mammary cells. According to the findings, bta-miR-375 could be a promising biomarker for the development of mastitis in dairy cattle.
ISSN:0301-4851
1573-4978
1573-4978
DOI:10.1007/s11033-023-09070-4