2-Keto-l-gulonic acid inhibits the growth of Bacillus pumilus and Ketogulonicigenium vulgare

The typical vitamin C mixed-fermentation process's second stage involves bioconversion of L-sorbose to 2-keto-L-gulonic acid (2-KLG), using a consortium comprising Ketogulonicigenium vulgare and Bacillus spp. (as helper strain). The concentration of the helper strain in the co-fermentation syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2023-10, Vol.39 (10), p.257-257, Article 257
Hauptverfasser: Zhang, Qian, Lyu, Shuxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The typical vitamin C mixed-fermentation process's second stage involves bioconversion of L-sorbose to 2-keto-L-gulonic acid (2-KLG), using a consortium comprising Ketogulonicigenium vulgare and Bacillus spp. (as helper strain). The concentration of the helper strain in the co-fermentation system was closely correlated with K. vulgare cell growth and 2-KLG accumulation. To understand the tolerance and response of the helper strain and K. vulgare to 2-KLG, 2-KLG was added to the single-strain system of Bacillus pumilus and K. vulgare and the basic physiological and biochemical properties were determined. In this study, the addition of 1 mg/mL 2-KLG reduced the number of viable and spore cells, lowered the levels of intracellular reactive oxygen species (ROS), enhanced the intra- and extracellular total antioxidant capacity (T-AOC), and significantly affected the B. pumilus sporulation-related genes expression levels. Furthermore, the addition of 1 mg/mL 2-KLG increased the intracellular ROS levels, decreased the intra- and extracellular T-AOC, and downregulated the antioxidant enzyme-related genes and 2-KLG production enzyme-related genes of K. vulgare . These results suggested that 2-KLG could induce acidic and oxidative stress in B. pumilus and K. vulgare , which could be a guide for a greater understanding of the interaction between the microorganisms.
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-023-03700-6