Rapid analysis of pharmaceutical and personal care products by soft microwave-based plasma ionization—linear ion trap mass spectrometer (SMPI-LTQ) in natural water
In this study, a soft microwave plasma torch (SMPT) combined with a mass spectrometer (MS) was used for the first time as an analytical method to detect and analyze various pharmaceutical and personal care products (PPCPs) in aquatic environments without the need for sample pretreatment. For this pu...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-10, Vol.30 (49), p.108263-108273 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a soft microwave plasma torch (SMPT) combined with a mass spectrometer (MS) was used for the first time as an analytical method to detect and analyze various pharmaceutical and personal care products (PPCPs) in aquatic environments without the need for sample pretreatment. For this purpose, ambient SMPT was used to generate plasma for ionizing the analyte molecules. Accordingly, nine PPCPs were identified by the SMPT-MS, and their identification was verified by collision-induced dissociation (CID). The technique’s performance was verified with known PPCP samples, and the limits of detection (LOD) and quantification (LOQ) obtained over a linear range of 50–1 μg/L were 1.56 to 2.81 and 2.07 to 3.62 μg/L, respectively, with the standard addition recovery rate falling between 87.14 and 115.16%. These results show that the method has excellent sensitivity and selectivity, suggesting that SMPT can rapidly and directly detect PPCPs in environmental water, making it a promising method for rapid water quality inspection. |
---|---|
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-30018-5 |