Second-Shell N Dopants Regulate Acidic O2 Reduction Pathways on Isolated Pt Sites

Pt is a well-known benchmark catalyst in the acidic oxygen reduction reaction (ORR) that drives electrochemical O2-to-H2O conversion with maximum chemical energy-to-electricity efficiency. Once dispersing bulk Pt into isolated single atoms, however, the preferential ORR pathway remains a long-standi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-04, Vol.146 (16), p.11181-11192
Hauptverfasser: Ni, Baoxin, Shen, Peng, Zhang, Guiru, Zhao, Jiajun, Ding, Honghe, Ye, Yifan, Yue, Zhouying, Yang, Hui, Wei, Hao, Jiang, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pt is a well-known benchmark catalyst in the acidic oxygen reduction reaction (ORR) that drives electrochemical O2-to-H2O conversion with maximum chemical energy-to-electricity efficiency. Once dispersing bulk Pt into isolated single atoms, however, the preferential ORR pathway remains a long-standing controversy due to their complex local coordination environment and diverse site density over substrates. Herein, using a set of carbon nanotube supported Pt–N–C single-atom catalysts, we demonstrate how the neighboring N dopants regulate the electronic structure of the Pt central atom and thus steer the ORR selectivity; that is, the O2-to-H2O2 conversion selectivity can be tailored from 10% to 85% at 0.3 V versus reversible hydrogen electrode. Moreover, via a comprehensive X-ray-radiated spectroscopy and shell-isolated nanoparticle-enhanced Raman spectroscopy analysis coupled with theoretical modeling, we reveal that a dominant pyridinic- and pyrrolic-N coordination within the first shell of Pt–N–C motifs favors the 4e– ORR, whereas the introduction of a second-shell graphitic-N dopant weakens *OOH binding on neighboring Pt sites and gives rise to a dominant 2e– ORR. These findings underscore the importance of the chemical environment effect for steering the electrochemical performance of single-atom catalysts.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.3c14186