Interaction Effects between the Main Components of Protein-Rich Biomass during Microwave-Assisted Pyrolysis
The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average he...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2024-05, Vol.58 (18), p.7826-7837 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43–28.24%), while inhibiting the gas generation, with S ranging from −20.17 to −6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81–412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization. |
---|---|
ISSN: | 0013-936X 1520-5851 1520-5851 |
DOI: | 10.1021/acs.est.3c10594 |