Prediction of weighted arithmetic water quality index for urban water quality using ensemble machine learning model

Urban water quality index (WQI) is an important factor for assessment quality of groundwater in the urban and rural area. In this research, the Weighted Arithmetic Water Quality Index (WA-WQI) was estimated for understanding the groundwater quality. Four machine learning (ML) models were developed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2024-03, Vol.352, p.141393-141393, Article 141393
Hauptverfasser: Mohseni, Usman, Pande, Chaitanya B., Chandra Pal, Subodh, Alshehri, Fahad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Urban water quality index (WQI) is an important factor for assessment quality of groundwater in the urban and rural area. In this research, the Weighted Arithmetic Water Quality Index (WA-WQI) was estimated for understanding the groundwater quality. Four machine learning (ML) models were developed including artificial neural network (ANN), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XG-Boost) in addition to multiple linear regression (MLR) for WA-WQI prediction at the Ujjain city of Madhya Pradesh in India. Groundwater quality samples were collected from 54 wards under the urban area, the main eight different physiochemical parameters were selected for WA-WQI prediction. The different input parameters data were analysed and calculated for the relationships of their ability to predict the results of WA-WQI. The ML models performance were calculated using three statistical metrics such as determination coefficient (R2), mean absolute error (MAE), and root mean square error (RMSE). In this research shown the XG-Boost model is better results other than other ML models. The best modelling results over the training phase revealed R2 = 0.969, RMSE = 2.169, MAE = 2.013 and over the testing phase R2 = 0.987, RMSE = 3.273, MAE = 2.727). All the ML models results were validated using receiver operating characteristic (ROC) curve for the best models selection. The results of best model area under curve (AUC) was 0.9048. Hence, XG-Boost model was given the accurate prediction of WA-WQI in the urban area. Based on the graphical presentation evaluation, XG-Boost model showed similar results of superiority. The obtained modelling results emphasis the utility of computer aid models for better planning and essential information for decision-makers, and water experts. The implement agency can adopt the procedures of water quality to decrease pollution and safe and healthy water provide to entire Ujjain city. Methodological Flowchart. [Display omitted] •Different machine learning (ML) models were applied to predict WA-WQI.•EC, alkalinity, hardness, and TDS were the causes of deteriorating water quality.•XG-Boost model showed superior prediction results and ANN was the worst model.•The ensemble model demonstrated powerful performance prediction models.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2024.141393