Interstitial decoration of Ag linking 3D Cu2O octahedron and 2D CaWO4 for augmented visible light active photocatalytic degradation of rifampicin and genotoxicity studies
A morphological oriented highly active Cu2O–Ag–CaWO4 (CAC) nano-heterojunction was fabricated for the visible light driven degradation of rifampicin (RFP). Octahedron shaped Cu2O being a base material, where the Tagetes shaped CaWO4 and Ag were embedded on it. The shape-controlled morphology of Cu2O...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2024-03, Vol.354, p.120451-120451, Article 120451 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A morphological oriented highly active Cu2O–Ag–CaWO4 (CAC) nano-heterojunction was fabricated for the visible light driven degradation of rifampicin (RFP). Octahedron shaped Cu2O being a base material, where the Tagetes shaped CaWO4 and Ag were embedded on it. The shape-controlled morphology of Cu2O and CaWO4 as well as Ag decoration influence high degree of adsorption of RFP and interfacial charge transfer between the nano-heterojunction. Further, the larger specific surface area (129.531 m2/g) and narrow band gap energy (2.57 eV) of CAC nano-heterojunction than the controls support the statement. Positively, CAC nano-heterojunction following Z-scheme-type charge transport mechanism attained 96% of RFP degradation within 100 min. O2•- and •OH are the primarily involved reactive oxidation species (ROS) during the photocatalytic reactions, determined by scavenger study and ESR analysis. The stability and reusability of the CAC nano-heterojunction was assessed through performing cyclic experiment of RFP degradation and it holds 96.8% of degradation even after 6th cycle. The stability of CAC nano-heterojunction after photodegradation was further confirmed based on crystalline pattern (XRD analysis) and compositional states (XPS analysis). Intermediates formed during RFP degradation and its toxicity was discovered by using GC-MS/MS and ECOSAR analysis respectively. The end-product toxicity against bacterial system and genotoxicity of CAC nano-heterojunction against Allium cepa were evaluated and the results were seemed to have no negative causes for the aquatic lives.
•CAC nano-heterojunction with Z-scheme-type charge transport mechanism was fabricated for RFP degradation.•CAC nano-heterojunction attained 96% of RFP degradation within 100 min.•O2.•- and •OH are the primarily involved ROS during the photocatalytic reactions.•Degradation pathway was proposed using GC-MS/MS analysis.•Toxicity studies against bacterial system and Allium cepa was employed. |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2024.120451 |