Enhanced extracellular vesicles mediated uttroside B (Utt-B) delivery to Hepatocellular carcinoma cell: Pharmacokinetics based on PBPK modelling
Our prior investigation has confirmed that the anti-hepatocellular carcinoma activity of the plant saponin, specifically Uttroside B (Utt-B), derived from the leaves of Solanum nigrum Linn. This study concentrated on formulating a novel biocompatible nanocarrier utilizing Extracellular vesicles (EVs...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2024-04, Vol.703, p.149648, Article 149648 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Our prior investigation has confirmed that the anti-hepatocellular carcinoma activity of the plant saponin, specifically Uttroside B (Utt-B), derived from the leaves of Solanum nigrum Linn. This study concentrated on formulating a novel biocompatible nanocarrier utilizing Extracellular vesicles (EVs) to enhance the delivery of plant saponin into cells. The physicochemical attributes of Extracellular Vesicles/UttrosideB (EVs/Utt-B) were comprehensively characterized through techniques such as Transmission Electron Microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Despite the promising therapeutic potential of this uttroside B, mechanistic know-how about its entry into cells is still in its infancy. Our research sheds light on the extracellular vesicle-mediated mechanism facilitating the entry of the saponin into cells, a phenomenon confirmed through the use of by confocal microscopy. We further analysed drug-releasing kinetics and simulated the Pharmacokinetics by PBPK modelling. The simulated pharmacokinetics revealed the bioavailability of Uttroside-B in oral administration against intravenous administration.
•Recognition of the need for understanding the mechanism of Utt-B entry into cells.•Highlighting the role of extracellular vesicles in facilitating Utt-B entry, validated by confocal microscopy.•Analysis of drug-releasing kinetics to understand the release profile of Uttroside B from the nanocarrier.•Use of PBPK modeling to simulate the pharmacokinetics of Uttroside B.•Revelation of the bioavailability of Uttroside B in oral administration compared to intravenous administration. |
---|---|
ISSN: | 0006-291X 1090-2104 1090-2104 |
DOI: | 10.1016/j.bbrc.2024.149648 |