A temporally and spatially explicit, data-driven estimation of airborne ragweed pollen concentrations across Europe
Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertaint...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2023-12, Vol.905, p.167095-167095, Article 167095 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.
[Display omitted]
•Temporal maps for the distribution of ragweed pollen for Europe were developed.•Missing daily pollen data were restored with the Gaussian method and deep learning.•A web page was created to upload newly measured or restored daily pollen data.•These are the first maps of pollen phenology, -quantity and frost events for Europe.•DL improves the accuracy more than GM, although it requires the use of weather data. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2023.167095 |