On-orbit calibration and performance of the EMIT imaging spectrometer
The Earth surface Mineral dust source InvesTigation (EMIT) is a remote visible to shortwave infrared (VSWIR) imaging spectrometer that has been operating onboard the International Space Station since July 2022. This article describes EMIT's on-orbit spectroradiometric calibration and validation...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2024-03, Vol.303, p.113986, Article 113986 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Earth surface Mineral dust source InvesTigation (EMIT) is a remote visible to shortwave infrared (VSWIR) imaging spectrometer that has been operating onboard the International Space Station since July 2022. This article describes EMIT's on-orbit spectroradiometric calibration and validation. Accurate spectroscopy is vital to achieve consistent mapping results with orbital imaging spectrometers. EMIT takes a unique approach to this challenge, with just six optical elements, no shutter, and no onboard calibration systems. Its simple design focuses on uniformity and stability to enable vicarious spectroradiometric calibration. Our experiments demonstrate that this approach is successful, approaching the fidelity of manual field spectroscopy in some cases, and enabling new and more accurate products across diverse Earth science disciplines. EMIT achieves several notable firsts for an instrument of its class. It demonstrates successful on-orbit adjustments of Focal Plane Array (FPA) alignment with sub-micron precision. It offers spectral uniformity better than 98%. Optical artifacts in the measurement channels are at least three orders of magnitude below the primary solar-reflected surface signals. Its noise performance enables percent-level discrimination in the depths of mineral absorption features. In these aspects, EMIT satisfies the stringent performance needs for the next generation of VSWIR imaging spectrometers to observe the Earth's ecosystems, geology, and water resources.
•The EMIT imaging spectrometer a VSWIR imaging spectrometer onboard the International Space Station.•We assess instrument performance and calibration accuracy.•EMIT offers 98% spatial uniformity and high radiometric precision. |
---|---|
ISSN: | 0034-4257 1879-0704 |
DOI: | 10.1016/j.rse.2023.113986 |