Skeleton phylogeny reconstructed with transcriptomes for the tribe Drosophilini (Diptera: Drosophilidae)
[Display omitted] •Phylotranscriptomic analysis of the tribe Drosophilini (Drosophilidae).•Taxon sampling included less explored lineages and non-Drosophila genera.•More than 290 single-copy orthologous genes were used for phylogenetic inference.•The reconstructed species phylogeny has resolved some...
Gespeichert in:
Veröffentlicht in: | Molecular phylogenetics and evolution 2024-02, Vol.191, p.107978-107978, Article 107978 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Phylotranscriptomic analysis of the tribe Drosophilini (Drosophilidae).•Taxon sampling included less explored lineages and non-Drosophila genera.•More than 290 single-copy orthologous genes were used for phylogenetic inference.•The reconstructed species phylogeny has resolved some issues so far in dispute.•The resulting skeleton topology is to be used as constraints for grafting analyses.
The family Drosophilidae is one of the most important model systems in evolutionary biology. Thanks to advances in high-throughput sequencing technology, a number of molecular phylogenetic analyses have been undertaken by using large data sets of many genes and many species sampled across this family. Especially, recent analyses using genome sequences have depicted the family-wide skeleton phylogeny with high confidence. However, the taxon sampling is still insufficient for minor lineages and non-Drosophila genera. In this study, we carried out phylogenetic analyses using a large number of transcriptome-based nucleotide sequences, focusing on the largest, core tribe Drosophilini in the Drosophilidae. In our analyses, some noise factors against phylogenetic reconstruction were taken into account by removing putative paralogy from the datasets and examining the effects of missing data, i.e. gene occupancy and site coverage, and incomplete lineage sorting. The inferred phylogeny has newly resolved the following phylogenetic positions/relationships at the genomic scale: (i) the monophyly of the subgenus Siphlodora including Zaprionus flavofasciatus to be transferred therein; (ii) the paraphyly of the robusta and melanica species groups within a clade comprised of the robusta, melanica and quadrisetata groups and Z. flavofasciatus; (iii) Drosophila curviceps (representing the curviceps group), D. annulipes (the quadrilineata subgroup of the immigrans group) and D. maculinotata clustered into a clade sister to the Idiomyia + Scaptomyza clade, forming together the expanded Hawaiian drosophilid lineage; (iv) Dichaetophora tenuicauda (representing the lineage comprised of the Zygothrica genus group and Dichaetophora) placed as the sister to the clade of the expanded Hawaiian drosophilid lineage and Siphlodora; and (v) relationships of the subgenus Drosophila and the genus Zaprionus as follows: (Zaprionus, (the quadrilineata subgroup, ((D. sternopleuralis, the immigrans group proper), (the quinaria radiation, the tripunctata radiation))). These results are to be |
---|---|
ISSN: | 1055-7903 1095-9513 |
DOI: | 10.1016/j.ympev.2023.107978 |