Combating toxic emissions from thermal recycling of polymeric fractions laden with novel brominated flame retardants (NBFRs) in e-waste: an in-situ approach using Ca(OH)2

Legacy brominated flame retardants (BFRs) in printed circuit boards are gradually being replaced by novel BFRs (NBFRs). Safe disposal and recycling of polymeric constituents in the polymeric fractions of e-waste necessitate the removal of their toxic and corrosive bromine content. This is currently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2023-09, Vol.30 (43), p.98300-98313
Hauptverfasser: Kuttiyathil, Mohamed Shafi, Ali, Labeeb, Ahmed, Oday H., Altarawneh, Mohammednoor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Legacy brominated flame retardants (BFRs) in printed circuit boards are gradually being replaced by novel BFRs (NBFRs). Safe disposal and recycling of polymeric constituents in the polymeric fractions of e-waste necessitate the removal of their toxic and corrosive bromine content. This is currently acquired through thermal recycling operations involving the pyrolysis of BFRs-containing materials with metal oxides. Nonetheless, the debromination capacity toward NBFRs is yet to be established. Thus, this study aims to address these two crucial gaps in the current knowledge pertaining to the plausible formation of brominated toxicants from the thermal decomposition of NBFRs and their thermal recycling potential. Herein, we investigate the pyrolysis of a mixture of 2,4,6-tribromophenol (TBP), allyl 2,4,6-tribromophenyl ether (ATE) and Tetrabromobisphenol A-bis (2,3-dibromo propyl ether) (TBBPA-DBPE) in the presence of acrylonitrile butadiene styrene (ABS) polymers at various loads. To demonstrate a viable debromination route, pyrolysis of NBFRs-ABS mixture with Ca(OH) 2 was also investigated. The latter is a potent debromination agent for legacy BFRs. Upon pyrolysis with Ca(OH) 2 , the bromine content in the collected oil was reduced up to 80.49% between 25–500 °C. Products of the co-pyrolysis process generally feature non-brominated aromatic and aliphatic compounds; a finding that indicates an effective thermal recycling approach. As evident by IC measurements, no HBr emission could be detected when Ca(OH) 2 is added to the mixture. As XRD patterns show, Ca(OH) 2 is partially converted into CaBr 2 . DFT calculations provide pathways for the observed surface debromination characterized by surface-assisted fission of aromatic C–Br bonds and the formation of CaBr sites. Outcomes reported herein are instrumental to designing and operating a thermal recycling facility of polymeric materials contaminated with high loads of bromine, i.e., most notably during scenarios encountered in the thermal recycling of e-waste.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-023-29428-2