Modified separators boost polysulfides adsorption-catalysis in lithium-sulfur batteries from Ni@Co hetero-nanocrystals into CNT-porous carbon dual frameworks

[Display omitted] In this manuscript, nickel/cobalt bimetallic nanocrystals confining into three-dimensional interpenetrating dual-carbon conductive structure (NiCo@C/CNTs) were successfully manufactured by annealing its core-shell structure (Ni-ZIF-67@ZIF-8) precursor under the high temperature. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-12, Vol.652, p.1417-1426
Hauptverfasser: Xiong, Jing, Liu, Xinyun, Xia, Peng, Guo, Xincheng, Lu, Shengjun, Lei, Hua, Zhang, Yufei, Fan, Haosen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] In this manuscript, nickel/cobalt bimetallic nanocrystals confining into three-dimensional interpenetrating dual-carbon conductive structure (NiCo@C/CNTs) were successfully manufactured by annealing its core-shell structure (Ni-ZIF-67@ZIF-8) precursor under the high temperature. The results presented that the bimetallic nickel and cobalt nanocrystals with superior catalytic activity could quickly convert solid Li2S/Li2S2into soluble LiPSs and effectively decrease the energy barrier. While the hierarchical CNT-porous carbon dual frameworks can provide quick electron/ion transport because of their large specific surface area and the exposure of enough active sites. When used as the separator modifier for lithium sulfur batteries, the battery properties were significantly improved with high specific capacity, outstanding rate capability, and long-term cycle stability. Specifically, its initial specific capacity can achieve to 1038.51 mAh g−1 at 0.5C. At the high rate of 3C, it still delivers satisfactory discharge capacity of 555 mAhg−1 and the capacity decay rate is only 0.065% per cycle after 1000 cycles at 1C. Furthermore, even exposed to heavy sulfur loading (3.61 mg/cm2), they still maintain promising cycle stability. Therefore, such kinds of MOFs derivative with powerful chemical immobilization and catalytic conversion for polysulfides provides a novel guidance for the modification separator and the potential application in the field of high-performance Li-S batteries.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.08.185