Porphyrin-based conjugated microporous adsorbent material for the efficient remediation of hexavalent chromium from the aquatic environment
The encapsulation and eradication of anions from water have received a lot of scrutinize and are extremely important for virtuous production and environmental treatment. To prepare extremely efficient adsorbents, a highly functionalized and conjugated microporous porphyrin-based adsorbent material (...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2023-07, Vol.30 (33), p.81055-81072 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The encapsulation and eradication of anions from water have received a lot of scrutinize and are extremely important for virtuous production and environmental treatment. To prepare extremely efficient adsorbents, a highly functionalized and conjugated microporous porphyrin-based adsorbent material (Co-4MPP) was synthesized using the Alder Longo method. Co-4MPP featured a hierarchical microporous and mesoporous layered structure containing nitrogen and oxygen-based functional groups with a specific surface area of 685.209 m
2
/g and a pore volume of 0.495 cm
3
/g. Co-4MPP demonstrated a greater Cr (VI) adsorption empathy than the pristine porphyrin-based material did. The effects of various parameters such as pH, dose, time, and temperature were explored on the Cr (VI) adsorption by Co-4MPP. The pseudo-second-order model and the Cr (VI) adsorption kinetics were in agreement (
R
2
= 0.999). The Langmuir isotherm model matched the Cr (VI) adsorption isotherm, demonstrating the optimum Cr (VI) adsorption capacities: 291.09, 307.42, and 339.17 mg/g at 298K, 312K, and 320K, correspondingly, with remediation effectiveness of 96.88%. The model evaluation further revealed that Cr (VI) adsorption mechanism on Co-4MPP was endothermic, spontaneous, and entropy-rising. The detailed discussion of the adsorption mechanism suggested that it could be a reduction, chelation, and electrostatic interaction, in which the protonated nitrogen and oxygen-containing functional groups on the porphyrin ring interacted with Cr (VI) anions to form a stable complex, thus remediating Cr (VI) anions efficiently. Moreover, Co-4MPP demonstrated strong reusability, maintaining 70% of its Cr (VI) elimination rate after four consecutive adsorptions.
Graphical abstract |
---|---|
ISSN: | 1614-7499 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-023-28014-w |