Zwitterionic Polymer Ionogel Electrolytes Supported by Coulombic Cross-Links: Impacts of Alkali Metal Cation Identity

Zwitterionic (ZI) polymers enable the formation of noncovalent cross-links within ionic liquid electrolytes (ILEs) to create nonflammable, mechanically robust, and highly conductive ionogel electrolytes. In this study, ZI homopolymer poly­(2-methacryloyloxyethyl phosphorylcholine) [poly­(MPC)] scaff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2024-04, Vol.128 (13), p.3273-3281
Hauptverfasser: Alsaedi, Mossab K., Tadesse, Meron Y., Ganesan, Venkat, Panzer, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zwitterionic (ZI) polymers enable the formation of noncovalent cross-links within ionic liquid electrolytes (ILEs) to create nonflammable, mechanically robust, and highly conductive ionogel electrolytes. In this study, ZI homopolymer poly­(2-methacryloyloxyethyl phosphorylcholine) [poly­(MPC)] scaffolds are synthesized in situ within lithium and/or sodium salt-based ILEs to construct a series of ionogels that contain between 3 and 15 wt % poly­(MPC). Room-temperature ionic conductivity values of these ionogels are found to vary between approximately 1.3 and 2.2 mS cm–1. For sodium only and 1:1 lithium/sodium equimolar mixed salt ionogels containing 6 wt % poly­(MPC), the ionic conductivity is found to improve by 14% compared to the neat ILE due to the presence of the ZI scaffold. Moreover, comparing the elastic modulus values of lithium- versus sodium-containing ionogels revealed a difference of up to 1 order of magnitude [10.6 vs 111 kPa, respectively, for 3 wt % poly­(MPC)]. Molecular dynamics simulations of ionogel precursor solutions corroborate the experimental results by demonstrating differences in the lithium/ZI monomer and sodium/ZI monomer cluster size distributions formed, which is hypothesized to influence the scaffold network cross-link density obtained upon photopolymerization. This work provides insights into why ZI polymer-supported ionogel properties that are relevant for the development of safer electrolytes for lithium-ion and sodium-ion batteries depend upon the chemical identity of the alkali metal cation.
ISSN:1520-6106
1520-5207
1520-5207
DOI:10.1021/acs.jpcb.3c08144