Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution
Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between...
Gespeichert in:
Veröffentlicht in: | Environmental technology & innovation 2024-02, Vol.33, p.103524, Article 103524 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103524 |
container_title | Environmental technology & innovation |
container_volume | 33 |
creator | Han, Miao Zhu, Xiaoyan Ruan, Chujin Wu, Hanqing Chen, Guowei Zhu, Kun Liu, Ying Wang, Gang |
description | Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between Pseudomonas aeruginosa PAO1 and potassium feldspar influence mineral dissolution and potassium bioavailability. The results revealed that P. aeruginosa PAO1 tended to adhere onto the mineral solid-liquid interfaces facilitated by the bacterial flagellar- and pilus-mediated interfacial motilities, which are often highly hindered by the mineral rough interfaces typically under hydration stress circumstances. The surface-attached bacterial life-form likely intensified potassium feldspar dissolution and thereby enhanced potassium releasing. As a consequence, it promoted bacterial population proliferation which further reinforced localized interactions between P. aeruginosa PAO1 and minerals, accelerating potassium release. In addition, the bacterial biofilm formation and potassium release peaked at 30 h after incubation, with a maximum available potassium concentration of 19.96 mg l−1 and a ratio of public potassium contribution of 47.0%. These cell-scale quantitative estimates on bacteria-minerals interactions provide new insights into mechanistic understanding of microbial functionalities in regulating the biogeochemical processes of soil elements.
[Display omitted]
•In-situ observation revealed P. aeruginosa PAO1's affinity towards colonizing mineral interface.•Biofilm formation of PAO1 onto mineral surface accelerated mineral dissolution.•Bacterial-mediated mineral dissolution facilitated the bacterial growth.•Released potassium served potential nutrient reserve available for neighborhood populations. |
doi_str_mv | 10.1016/j.eti.2023.103524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153170593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352186423005205</els_id><sourcerecordid>3153170593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7d49bc4f20cc24262b27a6baed4d5ac34c4f8432049dfc447bb6542b4721acad3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEElXpD-CWI5cUv5K04oQqXlIRF7hi-bERrpI4eB2k_nscpQdOnHbs_WalmSy7pmRNCa1uD2uIbs0I4-nNSybOsgVLs6CbSpz_0ZfZCvFASCJpWZXVIvt8dSb4Qjs_fB3RGdXmro8QlInO95irmOukIbixKzrXp82JaJQBzC0kOf3ng48KMWG5dYi-HacDV9lFo1qE1Wkus4_Hh_fdc7F_e3rZ3e8Lw1kZi9qKrTaiYcQYJljFNKtVpRVYYUtluEi7jeCMiK1tjBC11lUpmBY1o8ooy5fZzXx3CP57BIyyc2igbVUPfkSZ4nJak3LLE0pnNOVGDNDIIbhOhaOkRE51yoNMdcqpTjnXmTx3swdShh8HQaJx0BuwLoCJ0nr3j_sX2yR_kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153170593</pqid></control><display><type>article</type><title>Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Han, Miao ; Zhu, Xiaoyan ; Ruan, Chujin ; Wu, Hanqing ; Chen, Guowei ; Zhu, Kun ; Liu, Ying ; Wang, Gang</creator><creatorcontrib>Han, Miao ; Zhu, Xiaoyan ; Ruan, Chujin ; Wu, Hanqing ; Chen, Guowei ; Zhu, Kun ; Liu, Ying ; Wang, Gang</creatorcontrib><description>Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between Pseudomonas aeruginosa PAO1 and potassium feldspar influence mineral dissolution and potassium bioavailability. The results revealed that P. aeruginosa PAO1 tended to adhere onto the mineral solid-liquid interfaces facilitated by the bacterial flagellar- and pilus-mediated interfacial motilities, which are often highly hindered by the mineral rough interfaces typically under hydration stress circumstances. The surface-attached bacterial life-form likely intensified potassium feldspar dissolution and thereby enhanced potassium releasing. As a consequence, it promoted bacterial population proliferation which further reinforced localized interactions between P. aeruginosa PAO1 and minerals, accelerating potassium release. In addition, the bacterial biofilm formation and potassium release peaked at 30 h after incubation, with a maximum available potassium concentration of 19.96 mg l−1 and a ratio of public potassium contribution of 47.0%. These cell-scale quantitative estimates on bacteria-minerals interactions provide new insights into mechanistic understanding of microbial functionalities in regulating the biogeochemical processes of soil elements.
[Display omitted]
•In-situ observation revealed P. aeruginosa PAO1's affinity towards colonizing mineral interface.•Biofilm formation of PAO1 onto mineral surface accelerated mineral dissolution.•Bacterial-mediated mineral dissolution facilitated the bacterial growth.•Released potassium served potential nutrient reserve available for neighborhood populations.</description><identifier>ISSN: 2352-1864</identifier><identifier>EISSN: 2352-1864</identifier><identifier>DOI: 10.1016/j.eti.2023.103524</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bacterial motility ; bioavailability ; Biofilm ; climate change ; environmental technology ; feldspar ; microscopy ; Nutrient bioavailability ; potassium ; Potassium feldspar ; Pseudomonas aeruginosa ; soil ; soil formation ; soil nutrients</subject><ispartof>Environmental technology & innovation, 2024-02, Vol.33, p.103524, Article 103524</ispartof><rights>2024 The Authors</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-7d49bc4f20cc24262b27a6baed4d5ac34c4f8432049dfc447bb6542b4721acad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Miao</creatorcontrib><creatorcontrib>Zhu, Xiaoyan</creatorcontrib><creatorcontrib>Ruan, Chujin</creatorcontrib><creatorcontrib>Wu, Hanqing</creatorcontrib><creatorcontrib>Chen, Guowei</creatorcontrib><creatorcontrib>Zhu, Kun</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><title>Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution</title><title>Environmental technology & innovation</title><description>Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between Pseudomonas aeruginosa PAO1 and potassium feldspar influence mineral dissolution and potassium bioavailability. The results revealed that P. aeruginosa PAO1 tended to adhere onto the mineral solid-liquid interfaces facilitated by the bacterial flagellar- and pilus-mediated interfacial motilities, which are often highly hindered by the mineral rough interfaces typically under hydration stress circumstances. The surface-attached bacterial life-form likely intensified potassium feldspar dissolution and thereby enhanced potassium releasing. As a consequence, it promoted bacterial population proliferation which further reinforced localized interactions between P. aeruginosa PAO1 and minerals, accelerating potassium release. In addition, the bacterial biofilm formation and potassium release peaked at 30 h after incubation, with a maximum available potassium concentration of 19.96 mg l−1 and a ratio of public potassium contribution of 47.0%. These cell-scale quantitative estimates on bacteria-minerals interactions provide new insights into mechanistic understanding of microbial functionalities in regulating the biogeochemical processes of soil elements.
[Display omitted]
•In-situ observation revealed P. aeruginosa PAO1's affinity towards colonizing mineral interface.•Biofilm formation of PAO1 onto mineral surface accelerated mineral dissolution.•Bacterial-mediated mineral dissolution facilitated the bacterial growth.•Released potassium served potential nutrient reserve available for neighborhood populations.</description><subject>Bacterial motility</subject><subject>bioavailability</subject><subject>Biofilm</subject><subject>climate change</subject><subject>environmental technology</subject><subject>feldspar</subject><subject>microscopy</subject><subject>Nutrient bioavailability</subject><subject>potassium</subject><subject>Potassium feldspar</subject><subject>Pseudomonas aeruginosa</subject><subject>soil</subject><subject>soil formation</subject><subject>soil nutrients</subject><issn>2352-1864</issn><issn>2352-1864</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEElXpD-CWI5cUv5K04oQqXlIRF7hi-bERrpI4eB2k_nscpQdOnHbs_WalmSy7pmRNCa1uD2uIbs0I4-nNSybOsgVLs6CbSpz_0ZfZCvFASCJpWZXVIvt8dSb4Qjs_fB3RGdXmro8QlInO95irmOukIbixKzrXp82JaJQBzC0kOf3ng48KMWG5dYi-HacDV9lFo1qE1Wkus4_Hh_fdc7F_e3rZ3e8Lw1kZi9qKrTaiYcQYJljFNKtVpRVYYUtluEi7jeCMiK1tjBC11lUpmBY1o8ooy5fZzXx3CP57BIyyc2igbVUPfkSZ4nJak3LLE0pnNOVGDNDIIbhOhaOkRE51yoNMdcqpTjnXmTx3swdShh8HQaJx0BuwLoCJ0nr3j_sX2yR_kA</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Han, Miao</creator><creator>Zhu, Xiaoyan</creator><creator>Ruan, Chujin</creator><creator>Wu, Hanqing</creator><creator>Chen, Guowei</creator><creator>Zhu, Kun</creator><creator>Liu, Ying</creator><creator>Wang, Gang</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202402</creationdate><title>Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution</title><author>Han, Miao ; Zhu, Xiaoyan ; Ruan, Chujin ; Wu, Hanqing ; Chen, Guowei ; Zhu, Kun ; Liu, Ying ; Wang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7d49bc4f20cc24262b27a6baed4d5ac34c4f8432049dfc447bb6542b4721acad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacterial motility</topic><topic>bioavailability</topic><topic>Biofilm</topic><topic>climate change</topic><topic>environmental technology</topic><topic>feldspar</topic><topic>microscopy</topic><topic>Nutrient bioavailability</topic><topic>potassium</topic><topic>Potassium feldspar</topic><topic>Pseudomonas aeruginosa</topic><topic>soil</topic><topic>soil formation</topic><topic>soil nutrients</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Miao</creatorcontrib><creatorcontrib>Zhu, Xiaoyan</creatorcontrib><creatorcontrib>Ruan, Chujin</creatorcontrib><creatorcontrib>Wu, Hanqing</creatorcontrib><creatorcontrib>Chen, Guowei</creatorcontrib><creatorcontrib>Zhu, Kun</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental technology & innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Miao</au><au>Zhu, Xiaoyan</au><au>Ruan, Chujin</au><au>Wu, Hanqing</au><au>Chen, Guowei</au><au>Zhu, Kun</au><au>Liu, Ying</au><au>Wang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution</atitle><jtitle>Environmental technology & innovation</jtitle><date>2024-02</date><risdate>2024</risdate><volume>33</volume><spage>103524</spage><pages>103524-</pages><artnum>103524</artnum><issn>2352-1864</issn><eissn>2352-1864</eissn><abstract>Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between Pseudomonas aeruginosa PAO1 and potassium feldspar influence mineral dissolution and potassium bioavailability. The results revealed that P. aeruginosa PAO1 tended to adhere onto the mineral solid-liquid interfaces facilitated by the bacterial flagellar- and pilus-mediated interfacial motilities, which are often highly hindered by the mineral rough interfaces typically under hydration stress circumstances. The surface-attached bacterial life-form likely intensified potassium feldspar dissolution and thereby enhanced potassium releasing. As a consequence, it promoted bacterial population proliferation which further reinforced localized interactions between P. aeruginosa PAO1 and minerals, accelerating potassium release. In addition, the bacterial biofilm formation and potassium release peaked at 30 h after incubation, with a maximum available potassium concentration of 19.96 mg l−1 and a ratio of public potassium contribution of 47.0%. These cell-scale quantitative estimates on bacteria-minerals interactions provide new insights into mechanistic understanding of microbial functionalities in regulating the biogeochemical processes of soil elements.
[Display omitted]
•In-situ observation revealed P. aeruginosa PAO1's affinity towards colonizing mineral interface.•Biofilm formation of PAO1 onto mineral surface accelerated mineral dissolution.•Bacterial-mediated mineral dissolution facilitated the bacterial growth.•Released potassium served potential nutrient reserve available for neighborhood populations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.eti.2023.103524</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2352-1864 |
ispartof | Environmental technology & innovation, 2024-02, Vol.33, p.103524, Article 103524 |
issn | 2352-1864 2352-1864 |
language | eng |
recordid | cdi_proquest_miscellaneous_3153170593 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Bacterial motility bioavailability Biofilm climate change environmental technology feldspar microscopy Nutrient bioavailability potassium Potassium feldspar Pseudomonas aeruginosa soil soil formation soil nutrients |
title | Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-biophysical%20interactions%20at%20bacterium-mineral%20interfaces%20determine%20potassium%20dissolution&rft.jtitle=Environmental%20technology%20&%20innovation&rft.au=Han,%20Miao&rft.date=2024-02&rft.volume=33&rft.spage=103524&rft.pages=103524-&rft.artnum=103524&rft.issn=2352-1864&rft.eissn=2352-1864&rft_id=info:doi/10.1016/j.eti.2023.103524&rft_dat=%3Cproquest_cross%3E3153170593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153170593&rft_id=info:pmid/&rft_els_id=S2352186423005205&rfr_iscdi=true |