Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution

Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental technology & innovation 2024-02, Vol.33, p.103524, Article 103524
Hauptverfasser: Han, Miao, Zhu, Xiaoyan, Ruan, Chujin, Wu, Hanqing, Chen, Guowei, Zhu, Kun, Liu, Ying, Wang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103524
container_title Environmental technology & innovation
container_volume 33
creator Han, Miao
Zhu, Xiaoyan
Ruan, Chujin
Wu, Hanqing
Chen, Guowei
Zhu, Kun
Liu, Ying
Wang, Gang
description Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between Pseudomonas aeruginosa PAO1 and potassium feldspar influence mineral dissolution and potassium bioavailability. The results revealed that P. aeruginosa PAO1 tended to adhere onto the mineral solid-liquid interfaces facilitated by the bacterial flagellar- and pilus-mediated interfacial motilities, which are often highly hindered by the mineral rough interfaces typically under hydration stress circumstances. The surface-attached bacterial life-form likely intensified potassium feldspar dissolution and thereby enhanced potassium releasing. As a consequence, it promoted bacterial population proliferation which further reinforced localized interactions between P. aeruginosa PAO1 and minerals, accelerating potassium release. In addition, the bacterial biofilm formation and potassium release peaked at 30 h after incubation, with a maximum available potassium concentration of 19.96 mg l−1 and a ratio of public potassium contribution of 47.0%. These cell-scale quantitative estimates on bacteria-minerals interactions provide new insights into mechanistic understanding of microbial functionalities in regulating the biogeochemical processes of soil elements. [Display omitted] •In-situ observation revealed P. aeruginosa PAO1's affinity towards colonizing mineral interface.•Biofilm formation of PAO1 onto mineral surface accelerated mineral dissolution.•Bacterial-mediated mineral dissolution facilitated the bacterial growth.•Released potassium served potential nutrient reserve available for neighborhood populations.
doi_str_mv 10.1016/j.eti.2023.103524
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3153170593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352186423005205</els_id><sourcerecordid>3153170593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-7d49bc4f20cc24262b27a6baed4d5ac34c4f8432049dfc447bb6542b4721acad3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEElXpD-CWI5cUv5K04oQqXlIRF7hi-bERrpI4eB2k_nscpQdOnHbs_WalmSy7pmRNCa1uD2uIbs0I4-nNSybOsgVLs6CbSpz_0ZfZCvFASCJpWZXVIvt8dSb4Qjs_fB3RGdXmro8QlInO95irmOukIbixKzrXp82JaJQBzC0kOf3ng48KMWG5dYi-HacDV9lFo1qE1Wkus4_Hh_fdc7F_e3rZ3e8Lw1kZi9qKrTaiYcQYJljFNKtVpRVYYUtluEi7jeCMiK1tjBC11lUpmBY1o8ooy5fZzXx3CP57BIyyc2igbVUPfkSZ4nJak3LLE0pnNOVGDNDIIbhOhaOkRE51yoNMdcqpTjnXmTx3swdShh8HQaJx0BuwLoCJ0nr3j_sX2yR_kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153170593</pqid></control><display><type>article</type><title>Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Han, Miao ; Zhu, Xiaoyan ; Ruan, Chujin ; Wu, Hanqing ; Chen, Guowei ; Zhu, Kun ; Liu, Ying ; Wang, Gang</creator><creatorcontrib>Han, Miao ; Zhu, Xiaoyan ; Ruan, Chujin ; Wu, Hanqing ; Chen, Guowei ; Zhu, Kun ; Liu, Ying ; Wang, Gang</creatorcontrib><description>Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between Pseudomonas aeruginosa PAO1 and potassium feldspar influence mineral dissolution and potassium bioavailability. The results revealed that P. aeruginosa PAO1 tended to adhere onto the mineral solid-liquid interfaces facilitated by the bacterial flagellar- and pilus-mediated interfacial motilities, which are often highly hindered by the mineral rough interfaces typically under hydration stress circumstances. The surface-attached bacterial life-form likely intensified potassium feldspar dissolution and thereby enhanced potassium releasing. As a consequence, it promoted bacterial population proliferation which further reinforced localized interactions between P. aeruginosa PAO1 and minerals, accelerating potassium release. In addition, the bacterial biofilm formation and potassium release peaked at 30 h after incubation, with a maximum available potassium concentration of 19.96 mg l−1 and a ratio of public potassium contribution of 47.0%. These cell-scale quantitative estimates on bacteria-minerals interactions provide new insights into mechanistic understanding of microbial functionalities in regulating the biogeochemical processes of soil elements. [Display omitted] •In-situ observation revealed P. aeruginosa PAO1's affinity towards colonizing mineral interface.•Biofilm formation of PAO1 onto mineral surface accelerated mineral dissolution.•Bacterial-mediated mineral dissolution facilitated the bacterial growth.•Released potassium served potential nutrient reserve available for neighborhood populations.</description><identifier>ISSN: 2352-1864</identifier><identifier>EISSN: 2352-1864</identifier><identifier>DOI: 10.1016/j.eti.2023.103524</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bacterial motility ; bioavailability ; Biofilm ; climate change ; environmental technology ; feldspar ; microscopy ; Nutrient bioavailability ; potassium ; Potassium feldspar ; Pseudomonas aeruginosa ; soil ; soil formation ; soil nutrients</subject><ispartof>Environmental technology &amp; innovation, 2024-02, Vol.33, p.103524, Article 103524</ispartof><rights>2024 The Authors</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-7d49bc4f20cc24262b27a6baed4d5ac34c4f8432049dfc447bb6542b4721acad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Miao</creatorcontrib><creatorcontrib>Zhu, Xiaoyan</creatorcontrib><creatorcontrib>Ruan, Chujin</creatorcontrib><creatorcontrib>Wu, Hanqing</creatorcontrib><creatorcontrib>Chen, Guowei</creatorcontrib><creatorcontrib>Zhu, Kun</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><title>Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution</title><title>Environmental technology &amp; innovation</title><description>Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between Pseudomonas aeruginosa PAO1 and potassium feldspar influence mineral dissolution and potassium bioavailability. The results revealed that P. aeruginosa PAO1 tended to adhere onto the mineral solid-liquid interfaces facilitated by the bacterial flagellar- and pilus-mediated interfacial motilities, which are often highly hindered by the mineral rough interfaces typically under hydration stress circumstances. The surface-attached bacterial life-form likely intensified potassium feldspar dissolution and thereby enhanced potassium releasing. As a consequence, it promoted bacterial population proliferation which further reinforced localized interactions between P. aeruginosa PAO1 and minerals, accelerating potassium release. In addition, the bacterial biofilm formation and potassium release peaked at 30 h after incubation, with a maximum available potassium concentration of 19.96 mg l−1 and a ratio of public potassium contribution of 47.0%. These cell-scale quantitative estimates on bacteria-minerals interactions provide new insights into mechanistic understanding of microbial functionalities in regulating the biogeochemical processes of soil elements. [Display omitted] •In-situ observation revealed P. aeruginosa PAO1's affinity towards colonizing mineral interface.•Biofilm formation of PAO1 onto mineral surface accelerated mineral dissolution.•Bacterial-mediated mineral dissolution facilitated the bacterial growth.•Released potassium served potential nutrient reserve available for neighborhood populations.</description><subject>Bacterial motility</subject><subject>bioavailability</subject><subject>Biofilm</subject><subject>climate change</subject><subject>environmental technology</subject><subject>feldspar</subject><subject>microscopy</subject><subject>Nutrient bioavailability</subject><subject>potassium</subject><subject>Potassium feldspar</subject><subject>Pseudomonas aeruginosa</subject><subject>soil</subject><subject>soil formation</subject><subject>soil nutrients</subject><issn>2352-1864</issn><issn>2352-1864</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEElXpD-CWI5cUv5K04oQqXlIRF7hi-bERrpI4eB2k_nscpQdOnHbs_WalmSy7pmRNCa1uD2uIbs0I4-nNSybOsgVLs6CbSpz_0ZfZCvFASCJpWZXVIvt8dSb4Qjs_fB3RGdXmro8QlInO95irmOukIbixKzrXp82JaJQBzC0kOf3ng48KMWG5dYi-HacDV9lFo1qE1Wkus4_Hh_fdc7F_e3rZ3e8Lw1kZi9qKrTaiYcQYJljFNKtVpRVYYUtluEi7jeCMiK1tjBC11lUpmBY1o8ooy5fZzXx3CP57BIyyc2igbVUPfkSZ4nJak3LLE0pnNOVGDNDIIbhOhaOkRE51yoNMdcqpTjnXmTx3swdShh8HQaJx0BuwLoCJ0nr3j_sX2yR_kA</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Han, Miao</creator><creator>Zhu, Xiaoyan</creator><creator>Ruan, Chujin</creator><creator>Wu, Hanqing</creator><creator>Chen, Guowei</creator><creator>Zhu, Kun</creator><creator>Liu, Ying</creator><creator>Wang, Gang</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202402</creationdate><title>Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution</title><author>Han, Miao ; Zhu, Xiaoyan ; Ruan, Chujin ; Wu, Hanqing ; Chen, Guowei ; Zhu, Kun ; Liu, Ying ; Wang, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-7d49bc4f20cc24262b27a6baed4d5ac34c4f8432049dfc447bb6542b4721acad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacterial motility</topic><topic>bioavailability</topic><topic>Biofilm</topic><topic>climate change</topic><topic>environmental technology</topic><topic>feldspar</topic><topic>microscopy</topic><topic>Nutrient bioavailability</topic><topic>potassium</topic><topic>Potassium feldspar</topic><topic>Pseudomonas aeruginosa</topic><topic>soil</topic><topic>soil formation</topic><topic>soil nutrients</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Miao</creatorcontrib><creatorcontrib>Zhu, Xiaoyan</creatorcontrib><creatorcontrib>Ruan, Chujin</creatorcontrib><creatorcontrib>Wu, Hanqing</creatorcontrib><creatorcontrib>Chen, Guowei</creatorcontrib><creatorcontrib>Zhu, Kun</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental technology &amp; innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Miao</au><au>Zhu, Xiaoyan</au><au>Ruan, Chujin</au><au>Wu, Hanqing</au><au>Chen, Guowei</au><au>Zhu, Kun</au><au>Liu, Ying</au><au>Wang, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution</atitle><jtitle>Environmental technology &amp; innovation</jtitle><date>2024-02</date><risdate>2024</risdate><volume>33</volume><spage>103524</spage><pages>103524-</pages><artnum>103524</artnum><issn>2352-1864</issn><eissn>2352-1864</eissn><abstract>Bacteria-mineral interactions are widespread in the Earth’s critical zones. They play essential roles in soil ecosystems, e.g., minerals weathering, soil formation, soil nutrient cycling and climate change. Employing a microscopy experimental system, we quantified how microscale interactions between Pseudomonas aeruginosa PAO1 and potassium feldspar influence mineral dissolution and potassium bioavailability. The results revealed that P. aeruginosa PAO1 tended to adhere onto the mineral solid-liquid interfaces facilitated by the bacterial flagellar- and pilus-mediated interfacial motilities, which are often highly hindered by the mineral rough interfaces typically under hydration stress circumstances. The surface-attached bacterial life-form likely intensified potassium feldspar dissolution and thereby enhanced potassium releasing. As a consequence, it promoted bacterial population proliferation which further reinforced localized interactions between P. aeruginosa PAO1 and minerals, accelerating potassium release. In addition, the bacterial biofilm formation and potassium release peaked at 30 h after incubation, with a maximum available potassium concentration of 19.96 mg l−1 and a ratio of public potassium contribution of 47.0%. These cell-scale quantitative estimates on bacteria-minerals interactions provide new insights into mechanistic understanding of microbial functionalities in regulating the biogeochemical processes of soil elements. [Display omitted] •In-situ observation revealed P. aeruginosa PAO1's affinity towards colonizing mineral interface.•Biofilm formation of PAO1 onto mineral surface accelerated mineral dissolution.•Bacterial-mediated mineral dissolution facilitated the bacterial growth.•Released potassium served potential nutrient reserve available for neighborhood populations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.eti.2023.103524</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-1864
ispartof Environmental technology & innovation, 2024-02, Vol.33, p.103524, Article 103524
issn 2352-1864
2352-1864
language eng
recordid cdi_proquest_miscellaneous_3153170593
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Bacterial motility
bioavailability
Biofilm
climate change
environmental technology
feldspar
microscopy
Nutrient bioavailability
potassium
Potassium feldspar
Pseudomonas aeruginosa
soil
soil formation
soil nutrients
title Micro-biophysical interactions at bacterium-mineral interfaces determine potassium dissolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T23%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-biophysical%20interactions%20at%20bacterium-mineral%20interfaces%20determine%20potassium%20dissolution&rft.jtitle=Environmental%20technology%20&%20innovation&rft.au=Han,%20Miao&rft.date=2024-02&rft.volume=33&rft.spage=103524&rft.pages=103524-&rft.artnum=103524&rft.issn=2352-1864&rft.eissn=2352-1864&rft_id=info:doi/10.1016/j.eti.2023.103524&rft_dat=%3Cproquest_cross%3E3153170593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153170593&rft_id=info:pmid/&rft_els_id=S2352186423005205&rfr_iscdi=true