Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions
With the development of multi-energy systems and the urgent demand for low-carbon energy provision, the regional integrated energy system (IES) is considered an efficient paradigm to improve energy efficiency and carbon emission reduction. The optimal capacity planning of different IES components is...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2023-05, Vol.207, p.359-375 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the development of multi-energy systems and the urgent demand for low-carbon energy provision, the regional integrated energy system (IES) is considered an efficient paradigm to improve energy efficiency and carbon emission reduction. The optimal capacity planning of different IES components is considered a non-trivial task due to the uncertainties of renewable power generation and various demands (e.g., electricity, heating and cooling) as well as the carbon emission constraints. This paper addresses this challenge and presents a scenario-based robust optimal planning solution for the regional low-carbon IES fully considering the economic cost, carbon emission and energy supply reliability. The operational uncertainties of different forms of energy sources and demands are characterized by a controllable generative adversarial network (GAN). The proposed method is extensively assessed based on an IES case study in China through a comparative analysis, the numerical results show that compared with the traditional planning method, the proposed capacity planning solution can reduce the total cost by 4.24% and the carbon emissions by 42.61%, the effectiveness and benefits of the planning solution have been effectively confirmed.
•A scenario-based robust capacity planning solution of IES with carbon emission consideration is proposed.•A controllable GAN-based scenario generation is adopted for operational uncertainty characterization.•The proposed solution can reduce both the total cost and carbon emissions. |
---|---|
ISSN: | 0960-1481 |
DOI: | 10.1016/j.renene.2023.03.030 |