Buried Straw Layer Coupling Film Mulching Regulates Soil Salinity of Coastal Tidal Soil and Improves Maize (Zea mays L.) Growth
[Aims] The saline soil in continuous silting tidal areas will become a crucial reserved land resource in China. A prominent problem is controlling soil salinization for improving agricultural water and land resources’ productivity in coastal areas. [Methods] An experiment was conducted to study the...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-12, Vol.14 (24), p.4119 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Aims] The saline soil in continuous silting tidal areas will become a crucial reserved land resource in China. A prominent problem is controlling soil salinization for improving agricultural water and land resources’ productivity in coastal areas. [Methods] An experiment was conducted to study the effects of different mulching and tillage measures on soil salt-water status and maize growth. There were four treatments: (1) film mulching (FM), by only setting a transparent plastic film (with a thickness of 6 μm) on the surface soil; (2) straw deep-burying (SDB), in which only straw was buried as a layer at a soil depth of 30 cm; (3) combining film mulch with deep-buried straw (F+S), in which a straw layer was buried at a soil depth of 30 cm with plastic film mulching on the soil surface; and (4) control (CK), by simulating standard local practice. [Results] The results showed that the soil water storage (SWS) under FM and F+S was significantly higher than others, and F+S showed the best role in soil water conservation. The film mulching had a reasonable effect on soil salinity regulation during the whole maize growth stage; the soil salt content at 0–30 cm was decreased by 1 g/kg and 0.74 g/kg under F+S and FM, respectively. Compared to CK, the plant height, LAI, SPAD value, and yield were all improved under mulching and tillage. The growth process of maize and water-use efficiency (WUE) under F+S was more significantly improved than those under other treatments. [Conclusions] Overall, the F+S can be recommended as a suitable strategy for regulating soil salt and moisture, and thus improving crop productivity in coastal tidal areas. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w14244119 |