Efficient potassium (K) recycling and root carbon (C) metabolism improve K use efficiency in pear rootstock genotypes

To investigate K absorption and transport mechanisms by which pear rootstock genotypes respond to low-K stress, seedlings of a potassium-efficient pear rootstock, Pyrus ussuriensis, and a potassium-sensitive rootstock, Pyrus betulifolia, were supplied with different K concentrations in solution cult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry 2023-03, Vol.196, p.43-54
Hauptverfasser: Yang, Han, Peng, Lirun, Chen, Liyan, Zhang, Lijuan, Kan, Liping, Shi, Yujie, Mei, Xinlan, Malladi, Anish, Xu, Yangchun, Dong, Caixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate K absorption and transport mechanisms by which pear rootstock genotypes respond to low-K stress, seedlings of a potassium-efficient pear rootstock, Pyrus ussuriensis, and a potassium-sensitive rootstock, Pyrus betulifolia, were supplied with different K concentrations in solution culture. Significant differences in the absorption rate, Vmax and Km between the genotypes indicate that P. ussuriensis acclimatizes more readily to low-K stress by regulating its absorption and internal cycling. We also found that the K content in the leaves of P. betulifolia was significantly lower than that of P. ussuriensis, and the proportion of K that was returned to root from shoot, relative to K that was transported from root to shoot, was greater in P. ussuriensis, which suggests that P. ussuriensis more efficiently recycles and reuses K. When the transcriptomes of the two genotypes were compared, we found that photosynthetic genes such as CABs (Chlorophyll a/b-binding proteins), Lhcbs (Photosystem II-related proteins), and Psas (Photosystem Ⅰ associated proteins) displayed lower expression in leaves of P. betulifolia under no-K conditions, but not in P. ussuriensis. However, in the root of P. ussuriensis, carbon metabolism-related genes SS (Sucrose Synthase), HK (HexoKinase) and SDH (Sorbitol Dehydrogenase) and components of the TCA cycle (Tricarboxylic Acid cycle) were differentially expressed, indicating that changes in C metabolism may provide energy for increased K+ cycling in these plants, thereby allowing it to better adapt to the low-K environment. In addition, exogenous supply of various sugars to the roots influenced K+ influx, supporting the conclusion that sugar metabolism in roots significantly affects K+ absorption in pear. •Root sugar metabolism increases K-use efficiency in plants.•The expression of SS, HK, SDH genes regulated higher resistance to low-K.•Sucrose and sorbitol metabolism regulates absorption of K+.
ISSN:0981-9428
1873-2690
DOI:10.1016/j.plaphy.2023.01.024