Visible-Light-Driven Photocatalytic Degradation of High-Concentration Ammonia Nitrogen Wastewater by Magnetic Ferrite Nanosphere Photocatalysts
In this study, magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere photocatalysts were prepared by the sol–gel method at 300 °C, 400 °C, and 500 °C, respectively (named as CF300, CF400, CF500, MF300, MF400, MF500, ZF300, ZF400, and ZF500). The characterization by X-ray diffraction (XRD) revealed that...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2023-10, Vol.15 (20), p.3638 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, magnetic CuFe2O4, MgFe2O4, and ZnFe2O4 nanosphere photocatalysts were prepared by the sol–gel method at 300 °C, 400 °C, and 500 °C, respectively (named as CF300, CF400, CF500, MF300, MF400, MF500, ZF300, ZF400, and ZF500). The characterization by X-ray diffraction (XRD) revealed that the optimal calcination temperature was 400 °C. Then, CF400, MF400, and ZF400 were used to treat high-concentration ammonia nitrogen wastewater (HCAW, 1000 mg/L) at different pH levels. The result showed that the optimal pH for CF400, MF400 and ZF400 to degrade HCAW was 9.0, and CF400 required a shorter illumination time (80 min) than MF400 and ZF400 (120 min) to completely remove ammonia nitrogen from HCAW. However, CF400 was unstable and decomposed, and a blue substance was observed during the magnetic recovery experiment. The recovery rate of ZF400 (66.7%) was higher than MF400 (53.2%) with no decomposition phenomenon, and the ammonia nitrogen removal rate of ZF400 remained above 90% after five cycles. Additionally, the ammonia nitrogen removal rate of ZF400 could reach 80.2% when the ammonia nitrogen concentration was as high as 5000 mg/L. Therefore, compared with CF400 and MF400, ZF400 was more suitable for treating HCAW. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w15203638 |