Injectable polyisocyanide hydrogel as healing supplement for connective tissue regeneration in an abdominal wound model

In pelvic organ prolapse (POP) patients, the uterus, bladder and/or rectum descends into vagina due to weakened support tissues. High recurrence rates after POP surgery suggest an urgent need for improved surgical outcomes. Our aim is to promote connective tissue healing that results in stimulated t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2023-11, Vol.302, p.122337-122337, Article 122337
Hauptverfasser: Gudde, Aksel N., van Velthoven, Melissa J.J., Kouwer, Paul H.J., Roovers, Jan-Paul W.R., Guler, Zeliha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In pelvic organ prolapse (POP) patients, the uterus, bladder and/or rectum descends into vagina due to weakened support tissues. High recurrence rates after POP surgery suggest an urgent need for improved surgical outcomes. Our aim is to promote connective tissue healing that results in stimulated tissue support functions by surgically applying a hydrogel functionalized with biological cues. We used known vaginal wound healing promoting factors (basic fibroblast growth factor, β-estradiol, adipose-derived stem cells) in the biomimetic and injectable polyisocyanide (PIC) hydrogel, which in itself induces regenerative vaginal fibroblast behavior. The regenerative capacity of injected PIC hydrogel, and the additional pro-regenerative effects of these bioactive factors was evaluated in abdominal wounds in rabbits. Assessment of connective tissue healing (tensile testing, histology, immunohistochemistry) revealed that injection with all PIC formulations resulted in a statistically significant stiffness and collagen increase over time, in contrast to sham. Histological evaluation indicated new tissue growth with moderate to mild immune activity at the hydrogel – tissue interface. The results suggest that PIC injection in an abdominal wound improves healing towards regaining load-bearing capacity, which encourages us to investigate application of the hydrogel in a more translational vaginal model for POP surgery in sheep. [Display omitted] •Bioactive polyisocyanide hydrogels support abdominal tissue regeneration in rabbits.•Key tissue properties for pelvic floor support improve after injection.•Functionalization with β-estradiol potentially mitigates immune cell infiltration.•The immune response to the hydrogel is moderate to mild.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2023.122337