Peering into a Simplified Digestor for Households: Performance, Cost and Carbon-Neutral Niche

In this study, a black-shading cylindrical water tank made of high-density polyethylene was locally manufactured as a household digestor for treating cow manure in Bangladesh. Effluent slurry instead of water was reused for manure dilution under manure-to-slurry ratios of 1:2 and 1:1, to assess this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-01, Vol.16 (1), p.36
Hauptverfasser: He, Xiaoqin, Nasiruddin, Sayed Mohammad, Zhou, Xiaoqin, Li, Zifu, Mang, Heinz-Peter, Ryndin, Roman, Kabir, Humayun, Uddin, Sayed Mohammad Nazim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a black-shading cylindrical water tank made of high-density polyethylene was locally manufactured as a household digestor for treating cow manure in Bangladesh. Effluent slurry instead of water was reused for manure dilution under manure-to-slurry ratios of 1:2 and 1:1, to assess this small prototype’s production efficiency and feasibility. The specific biogas production at both ratios matched well, by 0.12 m3/kg VS and 0.14 m3/kg VS, respectively, while the former slurry dilution operation outperformed in daily and accumulative biogas production by 16% and 57%, correspondingly, referring to 0.49 Nm3/d on average and 8.55 Nm3 in total, potentially meeting a 2 h household cooking energy requirement. From a nationwide viewpoint, slurry dilution was proven to be a great initiative to conserve water amounting to 50,286,751 m3 for 114,810 households of 6 person-equivalents annually, while cutting chemical costs by USD 32,720,684/yr and trimming annual greenhouse gas emission by 1.8 million tons of CO2e. This study revealed that a small prototype digestor could be an alternative energy source for cost-effective and eco-friendly household applications.
ISSN:2073-4441
2073-4441
DOI:10.3390/w16010036