Orthology inference at scale with FastOMA

The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2025-01
Hauptverfasser: Majidian, Sina, Nevers, Yannis, Yazdizadeh Kharrazi, Ali, Warwick Vesztrocy, Alex, Pascarelli, Stefano, Moi, David, Glover, Natasha, Altenhoff, Adrian M, Dessimoz, Christophe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature methods
container_volume
creator Majidian, Sina
Nevers, Yannis
Yazdizadeh Kharrazi, Ali
Warwick Vesztrocy, Alex
Pascarelli, Stefano
Moi, David
Glover, Natasha
Altenhoff, Adrian M
Dessimoz, Christophe
description The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ .
doi_str_mv 10.1038/s41592-024-02552-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151454542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151454542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1351-b1ddcd0eff39916a5894d9597eb3eb49b733c7e5cb3a2aac3f6a9aa4c70a18b03</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EoqXwAxxQjnAIeL12Ex-rigJSUS9wttbOhgalTYlTof49gbZotJo9zMzhCXEN8h4k5g9Rg7EqlUr3Z4xK8xMxBKPzNANpTo-_tDAQFzF-SomolTkXA7SZQavUUNwt2m7Z1M3HLqnWJbe8DpxQl8RANSffVbdMZhS7xevkUpyVVEe-OvhIvM8e36bP6Xzx9DKdzNMAaCD1UBShkFyWaC2MyeRWF9bYjD2y19ZniCFjEzySIgpYjskS6ZBJgtxLHInb_e6mbb62HDu3qmLguqY1N9voEAxo00v1UbWPhraJseXSbdpqRe3OgXS_iNwekesRuT9ELu9LN4f9rV9x8V85MsEfOJpgew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151454542</pqid></control><display><type>article</type><title>Orthology inference at scale with FastOMA</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Majidian, Sina ; Nevers, Yannis ; Yazdizadeh Kharrazi, Ali ; Warwick Vesztrocy, Alex ; Pascarelli, Stefano ; Moi, David ; Glover, Natasha ; Altenhoff, Adrian M ; Dessimoz, Christophe</creator><creatorcontrib>Majidian, Sina ; Nevers, Yannis ; Yazdizadeh Kharrazi, Ali ; Warwick Vesztrocy, Alex ; Pascarelli, Stefano ; Moi, David ; Glover, Natasha ; Altenhoff, Adrian M ; Dessimoz, Christophe</creatorcontrib><description>The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ .</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-024-02552-8</identifier><identifier>PMID: 39753922</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature methods, 2025-01</ispartof><rights>2025. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1351-b1ddcd0eff39916a5894d9597eb3eb49b733c7e5cb3a2aac3f6a9aa4c70a18b03</cites><orcidid>0000-0002-5529-3774 ; 0000-0001-7492-1273 ; 0000-0001-5345-6982 ; 0000-0002-2664-7385 ; 0000-0002-2170-853X ; 0000-0002-4074-4261 ; 0000-0002-8604-2943 ; 0000-0002-2226-4125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39753922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majidian, Sina</creatorcontrib><creatorcontrib>Nevers, Yannis</creatorcontrib><creatorcontrib>Yazdizadeh Kharrazi, Ali</creatorcontrib><creatorcontrib>Warwick Vesztrocy, Alex</creatorcontrib><creatorcontrib>Pascarelli, Stefano</creatorcontrib><creatorcontrib>Moi, David</creatorcontrib><creatorcontrib>Glover, Natasha</creatorcontrib><creatorcontrib>Altenhoff, Adrian M</creatorcontrib><creatorcontrib>Dessimoz, Christophe</creatorcontrib><title>Orthology inference at scale with FastOMA</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><description>The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ .</description><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EoqXwAxxQjnAIeL12Ex-rigJSUS9wttbOhgalTYlTof49gbZotJo9zMzhCXEN8h4k5g9Rg7EqlUr3Z4xK8xMxBKPzNANpTo-_tDAQFzF-SomolTkXA7SZQavUUNwt2m7Z1M3HLqnWJbe8DpxQl8RANSffVbdMZhS7xevkUpyVVEe-OvhIvM8e36bP6Xzx9DKdzNMAaCD1UBShkFyWaC2MyeRWF9bYjD2y19ZniCFjEzySIgpYjskS6ZBJgtxLHInb_e6mbb62HDu3qmLguqY1N9voEAxo00v1UbWPhraJseXSbdpqRe3OgXS_iNwekesRuT9ELu9LN4f9rV9x8V85MsEfOJpgew</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Majidian, Sina</creator><creator>Nevers, Yannis</creator><creator>Yazdizadeh Kharrazi, Ali</creator><creator>Warwick Vesztrocy, Alex</creator><creator>Pascarelli, Stefano</creator><creator>Moi, David</creator><creator>Glover, Natasha</creator><creator>Altenhoff, Adrian M</creator><creator>Dessimoz, Christophe</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5529-3774</orcidid><orcidid>https://orcid.org/0000-0001-7492-1273</orcidid><orcidid>https://orcid.org/0000-0001-5345-6982</orcidid><orcidid>https://orcid.org/0000-0002-2664-7385</orcidid><orcidid>https://orcid.org/0000-0002-2170-853X</orcidid><orcidid>https://orcid.org/0000-0002-4074-4261</orcidid><orcidid>https://orcid.org/0000-0002-8604-2943</orcidid><orcidid>https://orcid.org/0000-0002-2226-4125</orcidid></search><sort><creationdate>20250103</creationdate><title>Orthology inference at scale with FastOMA</title><author>Majidian, Sina ; Nevers, Yannis ; Yazdizadeh Kharrazi, Ali ; Warwick Vesztrocy, Alex ; Pascarelli, Stefano ; Moi, David ; Glover, Natasha ; Altenhoff, Adrian M ; Dessimoz, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1351-b1ddcd0eff39916a5894d9597eb3eb49b733c7e5cb3a2aac3f6a9aa4c70a18b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majidian, Sina</creatorcontrib><creatorcontrib>Nevers, Yannis</creatorcontrib><creatorcontrib>Yazdizadeh Kharrazi, Ali</creatorcontrib><creatorcontrib>Warwick Vesztrocy, Alex</creatorcontrib><creatorcontrib>Pascarelli, Stefano</creatorcontrib><creatorcontrib>Moi, David</creatorcontrib><creatorcontrib>Glover, Natasha</creatorcontrib><creatorcontrib>Altenhoff, Adrian M</creatorcontrib><creatorcontrib>Dessimoz, Christophe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majidian, Sina</au><au>Nevers, Yannis</au><au>Yazdizadeh Kharrazi, Ali</au><au>Warwick Vesztrocy, Alex</au><au>Pascarelli, Stefano</au><au>Moi, David</au><au>Glover, Natasha</au><au>Altenhoff, Adrian M</au><au>Dessimoz, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthology inference at scale with FastOMA</atitle><jtitle>Nature methods</jtitle><addtitle>Nat Methods</addtitle><date>2025-01-03</date><risdate>2025</risdate><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ .</abstract><cop>United States</cop><pmid>39753922</pmid><doi>10.1038/s41592-024-02552-8</doi><orcidid>https://orcid.org/0000-0002-5529-3774</orcidid><orcidid>https://orcid.org/0000-0001-7492-1273</orcidid><orcidid>https://orcid.org/0000-0001-5345-6982</orcidid><orcidid>https://orcid.org/0000-0002-2664-7385</orcidid><orcidid>https://orcid.org/0000-0002-2170-853X</orcidid><orcidid>https://orcid.org/0000-0002-4074-4261</orcidid><orcidid>https://orcid.org/0000-0002-8604-2943</orcidid><orcidid>https://orcid.org/0000-0002-2226-4125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2025-01
issn 1548-7091
1548-7105
1548-7105
language eng
recordid cdi_proquest_miscellaneous_3151454542
source SpringerLink Journals; Nature Journals Online
title Orthology inference at scale with FastOMA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthology%20inference%20at%20scale%20with%20FastOMA&rft.jtitle=Nature%20methods&rft.au=Majidian,%20Sina&rft.date=2025-01-03&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-024-02552-8&rft_dat=%3Cproquest_cross%3E3151454542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151454542&rft_id=info:pmid/39753922&rfr_iscdi=true