Orthology inference at scale with FastOMA
The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing th...
Gespeichert in:
Veröffentlicht in: | Nature methods 2025-01 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Nature methods |
container_volume | |
creator | Majidian, Sina Nevers, Yannis Yazdizadeh Kharrazi, Ali Warwick Vesztrocy, Alex Pascarelli, Stefano Moi, David Glover, Natasha Altenhoff, Adrian M Dessimoz, Christophe |
description | The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ . |
doi_str_mv | 10.1038/s41592-024-02552-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3151454542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151454542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1351-b1ddcd0eff39916a5894d9597eb3eb49b733c7e5cb3a2aac3f6a9aa4c70a18b03</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EoqXwAxxQjnAIeL12Ex-rigJSUS9wttbOhgalTYlTof49gbZotJo9zMzhCXEN8h4k5g9Rg7EqlUr3Z4xK8xMxBKPzNANpTo-_tDAQFzF-SomolTkXA7SZQavUUNwt2m7Z1M3HLqnWJbe8DpxQl8RANSffVbdMZhS7xevkUpyVVEe-OvhIvM8e36bP6Xzx9DKdzNMAaCD1UBShkFyWaC2MyeRWF9bYjD2y19ZniCFjEzySIgpYjskS6ZBJgtxLHInb_e6mbb62HDu3qmLguqY1N9voEAxo00v1UbWPhraJseXSbdpqRe3OgXS_iNwekesRuT9ELu9LN4f9rV9x8V85MsEfOJpgew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151454542</pqid></control><display><type>article</type><title>Orthology inference at scale with FastOMA</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Majidian, Sina ; Nevers, Yannis ; Yazdizadeh Kharrazi, Ali ; Warwick Vesztrocy, Alex ; Pascarelli, Stefano ; Moi, David ; Glover, Natasha ; Altenhoff, Adrian M ; Dessimoz, Christophe</creator><creatorcontrib>Majidian, Sina ; Nevers, Yannis ; Yazdizadeh Kharrazi, Ali ; Warwick Vesztrocy, Alex ; Pascarelli, Stefano ; Moi, David ; Glover, Natasha ; Altenhoff, Adrian M ; Dessimoz, Christophe</creatorcontrib><description>The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ .</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-024-02552-8</identifier><identifier>PMID: 39753922</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature methods, 2025-01</ispartof><rights>2025. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1351-b1ddcd0eff39916a5894d9597eb3eb49b733c7e5cb3a2aac3f6a9aa4c70a18b03</cites><orcidid>0000-0002-5529-3774 ; 0000-0001-7492-1273 ; 0000-0001-5345-6982 ; 0000-0002-2664-7385 ; 0000-0002-2170-853X ; 0000-0002-4074-4261 ; 0000-0002-8604-2943 ; 0000-0002-2226-4125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39753922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Majidian, Sina</creatorcontrib><creatorcontrib>Nevers, Yannis</creatorcontrib><creatorcontrib>Yazdizadeh Kharrazi, Ali</creatorcontrib><creatorcontrib>Warwick Vesztrocy, Alex</creatorcontrib><creatorcontrib>Pascarelli, Stefano</creatorcontrib><creatorcontrib>Moi, David</creatorcontrib><creatorcontrib>Glover, Natasha</creatorcontrib><creatorcontrib>Altenhoff, Adrian M</creatorcontrib><creatorcontrib>Dessimoz, Christophe</creatorcontrib><title>Orthology inference at scale with FastOMA</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><description>The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ .</description><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EoqXwAxxQjnAIeL12Ex-rigJSUS9wttbOhgalTYlTof49gbZotJo9zMzhCXEN8h4k5g9Rg7EqlUr3Z4xK8xMxBKPzNANpTo-_tDAQFzF-SomolTkXA7SZQavUUNwt2m7Z1M3HLqnWJbe8DpxQl8RANSffVbdMZhS7xevkUpyVVEe-OvhIvM8e36bP6Xzx9DKdzNMAaCD1UBShkFyWaC2MyeRWF9bYjD2y19ZniCFjEzySIgpYjskS6ZBJgtxLHInb_e6mbb62HDu3qmLguqY1N9voEAxo00v1UbWPhraJseXSbdpqRe3OgXS_iNwekesRuT9ELu9LN4f9rV9x8V85MsEfOJpgew</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Majidian, Sina</creator><creator>Nevers, Yannis</creator><creator>Yazdizadeh Kharrazi, Ali</creator><creator>Warwick Vesztrocy, Alex</creator><creator>Pascarelli, Stefano</creator><creator>Moi, David</creator><creator>Glover, Natasha</creator><creator>Altenhoff, Adrian M</creator><creator>Dessimoz, Christophe</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5529-3774</orcidid><orcidid>https://orcid.org/0000-0001-7492-1273</orcidid><orcidid>https://orcid.org/0000-0001-5345-6982</orcidid><orcidid>https://orcid.org/0000-0002-2664-7385</orcidid><orcidid>https://orcid.org/0000-0002-2170-853X</orcidid><orcidid>https://orcid.org/0000-0002-4074-4261</orcidid><orcidid>https://orcid.org/0000-0002-8604-2943</orcidid><orcidid>https://orcid.org/0000-0002-2226-4125</orcidid></search><sort><creationdate>20250103</creationdate><title>Orthology inference at scale with FastOMA</title><author>Majidian, Sina ; Nevers, Yannis ; Yazdizadeh Kharrazi, Ali ; Warwick Vesztrocy, Alex ; Pascarelli, Stefano ; Moi, David ; Glover, Natasha ; Altenhoff, Adrian M ; Dessimoz, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1351-b1ddcd0eff39916a5894d9597eb3eb49b733c7e5cb3a2aac3f6a9aa4c70a18b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majidian, Sina</creatorcontrib><creatorcontrib>Nevers, Yannis</creatorcontrib><creatorcontrib>Yazdizadeh Kharrazi, Ali</creatorcontrib><creatorcontrib>Warwick Vesztrocy, Alex</creatorcontrib><creatorcontrib>Pascarelli, Stefano</creatorcontrib><creatorcontrib>Moi, David</creatorcontrib><creatorcontrib>Glover, Natasha</creatorcontrib><creatorcontrib>Altenhoff, Adrian M</creatorcontrib><creatorcontrib>Dessimoz, Christophe</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majidian, Sina</au><au>Nevers, Yannis</au><au>Yazdizadeh Kharrazi, Ali</au><au>Warwick Vesztrocy, Alex</au><au>Pascarelli, Stefano</au><au>Moi, David</au><au>Glover, Natasha</au><au>Altenhoff, Adrian M</au><au>Dessimoz, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthology inference at scale with FastOMA</atitle><jtitle>Nature methods</jtitle><addtitle>Nat Methods</addtitle><date>2025-01-03</date><risdate>2025</risdate><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ .</abstract><cop>United States</cop><pmid>39753922</pmid><doi>10.1038/s41592-024-02552-8</doi><orcidid>https://orcid.org/0000-0002-5529-3774</orcidid><orcidid>https://orcid.org/0000-0001-7492-1273</orcidid><orcidid>https://orcid.org/0000-0001-5345-6982</orcidid><orcidid>https://orcid.org/0000-0002-2664-7385</orcidid><orcidid>https://orcid.org/0000-0002-2170-853X</orcidid><orcidid>https://orcid.org/0000-0002-4074-4261</orcidid><orcidid>https://orcid.org/0000-0002-8604-2943</orcidid><orcidid>https://orcid.org/0000-0002-2226-4125</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2025-01 |
issn | 1548-7091 1548-7105 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_3151454542 |
source | SpringerLink Journals; Nature Journals Online |
title | Orthology inference at scale with FastOMA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthology%20inference%20at%20scale%20with%20FastOMA&rft.jtitle=Nature%20methods&rft.au=Majidian,%20Sina&rft.date=2025-01-03&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-024-02552-8&rft_dat=%3Cproquest_cross%3E3151454542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151454542&rft_id=info:pmid/39753922&rfr_iscdi=true |