Orthology inference at scale with FastOMA

The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2025-01
Hauptverfasser: Majidian, Sina, Nevers, Yannis, Yazdizadeh Kharrazi, Ali, Warwick Vesztrocy, Alex, Pascarelli, Stefano, Moi, David, Glover, Natasha, Altenhoff, Adrian M, Dessimoz, Christophe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The surge in genome data, with ongoing efforts aiming to sequence 1.5 M eukaryotes in a decade, could revolutionize genomics, revealing the origins, evolution and genetic innovations of biological processes. Yet, traditional genomics methods scale poorly with such large datasets. Here, addressing this, 'FastOMA' provides linear scalability for orthology inference, enabling the processing of thousands of eukaryotic genomes within a day. FastOMA maintains the high accuracy and resolution of the well-established Orthologous Matrix (OMA) approach in benchmarks. FastOMA is available via GitHub at https://github.com/DessimozLab/FastOMA/ .
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-024-02552-8