3D printed edible electronics: Components, fabrication approaches and applications
A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential t...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2025-03, Vol.272, p.117059, Article 117059 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential to create a safe, environmentally friendly, economical, and naturally degraded inside the human body. EEs have the potential to be used as medical and health devices to monitor physiological conditions and possibly treat diseases. These edible devices include different components, such as sensors, actuators, and other electronic elements, all made from edible ingredients such as sugars, proteins, polysaccharides, polymers, and others. Among the different fabrication approaches, 3D printing can provide reliable solutions to specific requirements. The concept of EEs has the potential to transform healthcare, providing more convenient, less invasive alternatives and personalized, customizable products for patients that beat traditional manufacturing methods. While the potential is enormous, there are critical challenges, notably ensuring the long-term stability, and regulatory and safety of these devices within the human body. Accordingly, a detailed understanding of the underlying concepts, fabrication approaches, design considerations, and action in the body/application range has been presented. As an evolving field, there is ample scope for research and multiple challenges must be addressed; these are elaborated towards the concluding sections of this article. |
---|---|
ISSN: | 0956-5663 1873-4235 1873-4235 |
DOI: | 10.1016/j.bios.2024.117059 |