Focusing Effects on Laser-Induced Plasma Parameters: Applications to a Graphite Target Under Martian Atmospheric Conditions
Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge...
Gespeichert in:
Veröffentlicht in: | Applied spectroscopy 2025-01, p.37028241307675 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO
atmospheres. The aim is to provide insights into the effects of focusing conditions and ambient pressure (3 to 9 mbar and 1000 mbar) on plasma parameters relevant to both Earth- and Mars-like settings. Our results show that increased ambient pressure significantly enhances electron and ion densities, while the focusing conditions influence the temperature and fluid velocity of plasma species, as well as the spatial distribution and intensity of the plasma, ultimately affecting its diagnostic potential. These findings are critical for optimizing LIBS applications in planetary exploration and contribute to improving quantitative analyses under varying atmospheric compositions. |
---|---|
ISSN: | 0003-7028 1943-3530 1943-3530 |
DOI: | 10.1177/00037028241307675 |