Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem

We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2007-11, Vol.14 (9), p.741-750
Hauptverfasser: Lukas, D, Dostal, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 750
container_issue 9
container_start_page 741
container_title Numerical linear algebra with applications
container_volume 14
creator Lukas, D
Dostal, Z
description We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.552
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31498211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31498211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3302-ede18b6f7517168aca90050f6978fe7323c1a3143e0f0e88fc454bf97e952b7f3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoso-Il_oSc9SNdJs2naoyx-YdGDKwteQjY7WaNpUpss6r83UvHmaYaZZ96BJ8uOCUwIQHnurJwwVm5lewSapiAMqu2fnkPBaMl2s_0QXgGgYg3dy9RDH00nbd5tbDTrwazyfkDl3cpE4x2u8oCdKTrvfPTOqFxu1h26mBatXA_SrY10IZd9b02aRZ_HF8wfo3_DkJL80mJ3mO1oaQMe_daD7Onqcj67KdqH69vZRVsoSqEscIWkXlaaM8JJVUslGwAGump4rZHTkioiKZlSBA1Y11pN2XSpG44NK5dc04PsZMxNf983GKLoTFBorXToN0Gk26YuCUng6QiqwYcwoBb9kCQMX4KA-JEokkSRJCbybCQ_jMWv_zBx316MdDHSJkT8_KPl8CYqTjkTi_trsbibw_R51oo5_Qay14Nc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31498211</pqid></control><display><type>article</type><title>Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lukas, D ; Dostal, Z</creator><creatorcontrib>Lukas, D ; Dostal, Z</creatorcontrib><description>We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.552</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>augmented Lagrangians ; multigrid ; Stokes problem</subject><ispartof>Numerical linear algebra with applications, 2007-11, Vol.14 (9), p.741-750</ispartof><rights>Copyright © 2007 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3302-ede18b6f7517168aca90050f6978fe7323c1a3143e0f0e88fc454bf97e952b7f3</citedby><cites>FETCH-LOGICAL-c3302-ede18b6f7517168aca90050f6978fe7323c1a3143e0f0e88fc454bf97e952b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lukas, D</creatorcontrib><creatorcontrib>Dostal, Z</creatorcontrib><title>Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley &amp; Sons, Ltd.</description><subject>augmented Lagrangians</subject><subject>multigrid</subject><subject>Stokes problem</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoso-Il_oSc9SNdJs2naoyx-YdGDKwteQjY7WaNpUpss6r83UvHmaYaZZ96BJ8uOCUwIQHnurJwwVm5lewSapiAMqu2fnkPBaMl2s_0QXgGgYg3dy9RDH00nbd5tbDTrwazyfkDl3cpE4x2u8oCdKTrvfPTOqFxu1h26mBatXA_SrY10IZd9b02aRZ_HF8wfo3_DkJL80mJ3mO1oaQMe_daD7Onqcj67KdqH69vZRVsoSqEscIWkXlaaM8JJVUslGwAGump4rZHTkioiKZlSBA1Y11pN2XSpG44NK5dc04PsZMxNf983GKLoTFBorXToN0Gk26YuCUng6QiqwYcwoBb9kCQMX4KA-JEokkSRJCbybCQ_jMWv_zBx316MdDHSJkT8_KPl8CYqTjkTi_trsbibw_R51oo5_Qay14Nc</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Lukas, D</creator><creator>Dostal, Z</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200711</creationdate><title>Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem</title><author>Lukas, D ; Dostal, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3302-ede18b6f7517168aca90050f6978fe7323c1a3143e0f0e88fc454bf97e952b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>augmented Lagrangians</topic><topic>multigrid</topic><topic>Stokes problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukas, D</creatorcontrib><creatorcontrib>Dostal, Z</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukas, D</au><au>Dostal, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2007-11</date><risdate>2007</risdate><volume>14</volume><issue>9</issue><spage>741</spage><epage>750</epage><pages>741-750</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nla.552</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2007-11, Vol.14 (9), p.741-750
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_miscellaneous_31498211
source Wiley Online Library Journals Frontfile Complete
subjects augmented Lagrangians
multigrid
Stokes problem
title Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20multigrid%20preconditioned%20semi-monotonic%20augmented%20Lagrangians%20applied%20to%20the%20Stokes%20problem&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Lukas,%20D&rft.date=2007-11&rft.volume=14&rft.issue=9&rft.spage=741&rft.epage=750&rft.pages=741-750&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.552&rft_dat=%3Cproquest_cross%3E31498211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31498211&rft_id=info:pmid/&rfr_iscdi=true