Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem
We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision contro...
Gespeichert in:
Veröffentlicht in: | Numerical linear algebra with applications 2007-11, Vol.14 (9), p.741-750 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 750 |
---|---|
container_issue | 9 |
container_start_page | 741 |
container_title | Numerical linear algebra with applications |
container_volume | 14 |
creator | Lukas, D Dostal, Z |
description | We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nla.552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31498211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31498211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3302-ede18b6f7517168aca90050f6978fe7323c1a3143e0f0e88fc454bf97e952b7f3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoso-Il_oSc9SNdJs2naoyx-YdGDKwteQjY7WaNpUpss6r83UvHmaYaZZ96BJ8uOCUwIQHnurJwwVm5lewSapiAMqu2fnkPBaMl2s_0QXgGgYg3dy9RDH00nbd5tbDTrwazyfkDl3cpE4x2u8oCdKTrvfPTOqFxu1h26mBatXA_SrY10IZd9b02aRZ_HF8wfo3_DkJL80mJ3mO1oaQMe_daD7Onqcj67KdqH69vZRVsoSqEscIWkXlaaM8JJVUslGwAGump4rZHTkioiKZlSBA1Y11pN2XSpG44NK5dc04PsZMxNf983GKLoTFBorXToN0Gk26YuCUng6QiqwYcwoBb9kCQMX4KA-JEokkSRJCbybCQ_jMWv_zBx316MdDHSJkT8_KPl8CYqTjkTi_trsbibw_R51oo5_Qay14Nc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31498211</pqid></control><display><type>article</type><title>Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lukas, D ; Dostal, Z</creator><creatorcontrib>Lukas, D ; Dostal, Z</creatorcontrib><description>We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.552</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>augmented Lagrangians ; multigrid ; Stokes problem</subject><ispartof>Numerical linear algebra with applications, 2007-11, Vol.14 (9), p.741-750</ispartof><rights>Copyright © 2007 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3302-ede18b6f7517168aca90050f6978fe7323c1a3143e0f0e88fc454bf97e952b7f3</citedby><cites>FETCH-LOGICAL-c3302-ede18b6f7517168aca90050f6978fe7323c1a3143e0f0e88fc454bf97e952b7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lukas, D</creatorcontrib><creatorcontrib>Dostal, Z</creatorcontrib><title>Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley & Sons, Ltd.</description><subject>augmented Lagrangians</subject><subject>multigrid</subject><subject>Stokes problem</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoso-Il_oSc9SNdJs2naoyx-YdGDKwteQjY7WaNpUpss6r83UvHmaYaZZ96BJ8uOCUwIQHnurJwwVm5lewSapiAMqu2fnkPBaMl2s_0QXgGgYg3dy9RDH00nbd5tbDTrwazyfkDl3cpE4x2u8oCdKTrvfPTOqFxu1h26mBatXA_SrY10IZd9b02aRZ_HF8wfo3_DkJL80mJ3mO1oaQMe_daD7Onqcj67KdqH69vZRVsoSqEscIWkXlaaM8JJVUslGwAGump4rZHTkioiKZlSBA1Y11pN2XSpG44NK5dc04PsZMxNf983GKLoTFBorXToN0Gk26YuCUng6QiqwYcwoBb9kCQMX4KA-JEokkSRJCbybCQ_jMWv_zBx316MdDHSJkT8_KPl8CYqTjkTi_trsbibw_R51oo5_Qay14Nc</recordid><startdate>200711</startdate><enddate>200711</enddate><creator>Lukas, D</creator><creator>Dostal, Z</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200711</creationdate><title>Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem</title><author>Lukas, D ; Dostal, Z</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3302-ede18b6f7517168aca90050f6978fe7323c1a3143e0f0e88fc454bf97e952b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>augmented Lagrangians</topic><topic>multigrid</topic><topic>Stokes problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukas, D</creatorcontrib><creatorcontrib>Dostal, Z</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukas, D</au><au>Dostal, Z</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2007-11</date><risdate>2007</risdate><volume>14</volume><issue>9</issue><spage>741</spage><epage>750</epage><pages>741-750</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nla.552</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-5325 |
ispartof | Numerical linear algebra with applications, 2007-11, Vol.14 (9), p.741-750 |
issn | 1070-5325 1099-1506 |
language | eng |
recordid | cdi_proquest_miscellaneous_31498211 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | augmented Lagrangians multigrid Stokes problem |
title | Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20multigrid%20preconditioned%20semi-monotonic%20augmented%20Lagrangians%20applied%20to%20the%20Stokes%20problem&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Lukas,%20D&rft.date=2007-11&rft.volume=14&rft.issue=9&rft.spage=741&rft.epage=750&rft.pages=741-750&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.552&rft_dat=%3Cproquest_cross%3E31498211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=31498211&rft_id=info:pmid/&rfr_iscdi=true |