Optimal multigrid preconditioned semi-monotonic augmented Lagrangians applied to the Stokes problem

We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2007-11, Vol.14 (9), p.741-750
Hauptverfasser: Lukas, D, Dostal, Z
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an optimal computational complexity algorithm for the solution of quadratic programming problems with equality constraints arising from partial differential equations. The algorithm combines a variant of the semi‐monotonic augmented Lagrangian (SMALE) method with adaptive precision control and a multigrid preconditioning for the Hessian of the cost function and for the inner product on the space of Lagrange variables. The update rule for penalty parameter acts as preconditioning of constraints. The optimality of the algorithm is theoretically proven and confirmed by numerical experiments for the two‐dimensional Stokes problem. Copyright © 2007 John Wiley & Sons, Ltd.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.552