Disrupted methionine cycle triggers muscle atrophy in cancer cachexia through epigenetic regulation of REDD1

The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CELL METABOLISM 2024-12
Hauptverfasser: Lin, Kai, Wei, Lulu, Wang, Ranran, Li, Li, Song, Shiyu, Wang, Fei, He, Meiwei, Pu, Wenyuan, Wang, Jinglin, Wazir, Junaid, Cao, Wangsen, Yang, Xiaozhong, Treuter, Eckardt, Fan, Rongrong, Wang, Yongxiang, Huang, Zhiqiang, Wang, Hongwei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (Ddit4) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice. Methionine supplementation restores DNA methylation of the Ddit4 promoter in a DNMT3A-dependent manner, thereby inhibiting activating transcription factor 4 (ATF4)-mediated Ddit4 transcription. Thus, with the identification of the methionine/SAM-DNMT3A/DNA hypomethylation-Ddit4/REDD1 axis, our study provides molecular insights into an epigenetic mechanism underlying cancer cachexia, and it suggests nutrient supplementation as a promising therapeutic strategy to prevent or reverse cachectic muscle atrophy.
ISSN:1550-4131
1932-7420
1932-7420
DOI:10.1016/j.cmet.2024.10.017