A Software Tool for Rapid and Automated Preprocessing of Large-Scale Serum Metabolomic Data by Multisegment Injection-Capillary Electrophoresis-Mass Spectrometry
Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing proc...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (99.9%), acceptable intermediate precision (median CV = 16.0%), consistent metabolite peak integration (mean bias = -2.1%), and good mutual agreement when quantifying 16 plasma metabolites from NIST SRM-1950 (mean bias = -1.3%). Reference ranges are also reported for 40 serum metabolites in a national nutritional survey of Brazilian children under 5 years of age from the ENANI-2019 study. MSI-CE-MS in conjunction with PeakMeister allows for rapid and automated processing of large-scale metabolomic studies that tolerate nonlinear migration time shifts without complicated dynamic time warping or effective mobility scale transformations. |
---|---|
ISSN: | 0003-2700 1520-6882 1520-6882 |
DOI: | 10.1021/acs.analchem.4c03513 |