Creating and Deleting a Single Dipolar Skyrmion by Surface Spin Twists
We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions i...
Gespeichert in:
Veröffentlicht in: | Nano letters 2025-01, Vol.25 (1), p.121-128 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions is well-understood through the spin-transfer torque acting on surface spin twists of the spontaneous 3D ferromagnetic state, caused by the magnetic dipole–dipole interaction of the uniaxial Fe3Sn2 magnet with a low-quality factor. Current-induced deletions of skyrmions result from the combined effects of magnetic hysteresis and Joule thermal heating. Our results are replicated consistently through 3D micromagnetic simulations. Our approach offers a viable method for achieving reliable single-bit operations in skyrmionic devices for applications such as random-access memories. |
---|---|
ISSN: | 1530-6984 1530-6992 1530-6992 |
DOI: | 10.1021/acs.nanolett.4c04606 |