Enhanced wound healing properties by sodium alginate-carboxymethyl cellulose hydrogel enriched with decellularized amniotic membrane
[Display omitted] Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modu...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutics and biopharmaceutics 2025-02, Vol.207, p.114621, Article 114621 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings. Here, we developed and evaluated a novel hydrogel composed of sodium alginate (SA) and carboxymethyl cellulose (CMC), enriched with decellularized extracellular matrix of amniotic membrane (dAM), using calcium chloride (CaCl2) as a crosslinker. An incorporation of dAM imparted biomimetic qualities, as evidenced by SEM, showing a fibrous extracellular matrix-like structure. Rheological studies demonstrated the optimal viscosity of SA-CMC-dAM for cell proliferation and adhesion, overcoming limitations of SA and CMC alone. The hydrogel exhibited the highest moisture absorption (12.27±0.59 %) and enhanced hydrophilicity, as confirmed by the contact angle assay, ensuring suitability for wound applications. Biological assessments revealed superior fibroblast migration in scratch assays and significant anti-biofilm activity (∼70 % reduction in E. coli biofilms) alongside antimicrobial efficacy, supported by FDA/PI assays. The zebrafish embryo studies validated its biocompatibility (20 μg/ml) and demonstrated potent anti-inflammatory effects, with a marked reduction in neutrophil recruitment (∼25 %) in tail transection models compared to controls. These findings suggest that the SA-CMC-dAM hydrogel synergises structural, antibacterial, and anti-inflammatory properties, making it a promising candidate for wound healing applications. The biomimetic and multifunctional design provides a strong basis for further translational studies in mammalian systems. |
---|---|
ISSN: | 0939-6411 1873-3441 1873-3441 |
DOI: | 10.1016/j.ejpb.2024.114621 |