Assessing the ecological effects of the World's Largest Forestry Eco-engineering: Three-North Protective Forest Program within the initially scheduled range from 1978 to 2022
China's Three-North Protective Forest Program (TNP) is the world's most ambitious afforestation project (ongoing from 1978 to 2050), which aims to increase forest coverage through afforestation and reforestation, protect agriculture, reduce soil erosion, and control desertification. Althou...
Gespeichert in:
Veröffentlicht in: | Science China. Life sciences 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | China's Three-North Protective Forest Program (TNP) is the world's most ambitious afforestation project (ongoing from 1978 to 2050), which aims to increase forest coverage through afforestation and reforestation, protect agriculture, reduce soil erosion, and control desertification. Although TNP has been ongoing for 45 years, its rationales and effects remain uncertain. Here, we conducted a range-wide assessment of TNP by analyzing data from >10,000 scenes of satellite images and >50,000 field survey plots. The TNP range and definitions of shelterbelts, arboreal forests, and shrublands were changed during the study period, but we used the initial TNP range (4.07 million km
) and the definitions in 1978 for keeping the consistency, comparability, and comprehensiveness. The TNP increased forest coverage from 5.05% in 1978 to 9.69% in 2022, with arboreal forests, shrublands, and shelterbelts increasing by 42.5%, 184.4%, and 53.6%, respectively. However, only 40.1% of the 471,113 km
afforested area was established between 1978 and 2022. The well-established shelterbelts improved crop yield by 4.3%-9.5%, but only 10.2% of all the farmlands in TNP regions (TNR) were protected. The total area of soil erosion due to hydraulic forces was reduced by 447,363 km
, with 61% of this reduction attributed to TNP. TNP contributed to the reduction of desertification by 15%, largely due to the low rate of afforestation success and the largely decreased grasslands. The total carbon sequestration from TNP was 1.96 Pg C. Moreover, water storage in TNR showed a decreasing trend, but the contribution rate of TNP was only 7.8%. Our results illustrate that forestry eco-engineering projects are feasible in the management and restoration of arid and semi-arid degraded lands, but attention must be paid to fully considering the ecological carrying capacity of water resources, matching the species to sites, strengthening the post-afforestation management, as well as keeping the balances between composite ecosystems. |
---|---|
ISSN: | 1674-7305 1869-1889 1869-1889 |
DOI: | 10.1007/s11427-024-2705-4 |