Ex Situ pH-Induced Reversible Wettability Switching for an Environmentally Robust and High-Efficiency Stain-Proof Coating
Developing superwetting coatings with environmental adaptability is critical for sustainable industrial applications. However, traditional anti-wetting coatings often fall short due to their susceptibility to environmental factors (UV light, temperature, mold growth, and abrasion) and inadequate sta...
Gespeichert in:
Veröffentlicht in: | Small methods 2024-12, p.e2401621 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing superwetting coatings with environmental adaptability is critical for sustainable industrial applications. However, traditional anti-wetting coatings often fall short due to their susceptibility to environmental factors (UV light, temperature, mold growth, and abrasion) and inadequate stain resistance in complex media. Herein, a durable ex situ pH-responsive coating with reversible wettability switching, engineered by integrating hydrophobic polydimethylsiloxane and tertiary amine structures is presented. The resulting hierarchical micro-nano surface structure, combined with a trapped air cushion, ensures low water adhesion and stable superhydrophobicity. Notably, after ex situ pH treatment, the modulation of surface N
content synergistically interacts with polydimethylsiloxane chains, enabling a controlled transition in surface wettability from 150° to 68.5°, which can spontaneously revert to a hydrophobic state upon heating and drying. This transition enhances stain resistance in both air and underwater environments, resulting in a 17.2% increase in detergency compared to superhydrophobic controls. Moreover, the coating demonstrates remarkable durability, with no staining, peeling, or mildew growth (grade 0) even after 1500 h of UV radiation and 28 days of mildew resistance testing. This work offers a highly adaptable and stain-resistant coating for applications in building and infrastructure protection, as well as in smart textiles designed for multi-media decontamination. |
---|---|
ISSN: | 2366-9608 2366-9608 |
DOI: | 10.1002/smtd.202401621 |