Optimal partial regularity of minimizers of quasiconvex variational integrals
We prove partial regularity with optimal Hölder exponent of vector-valued minimizers u of the quasiconvex variational integral $\int F( x,u,Du) \,{\rm d}x$ under polynomial growth. We employ the indirect method of the bilinear form.
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2007-10, Vol.13 (4), p.639-656 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove partial regularity with optimal Hölder exponent of vector-valued minimizers u of the quasiconvex variational integral $\int F( x,u,Du) \,{\rm d}x$ under polynomial growth. We employ the indirect method of the bilinear form. |
---|---|
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv:2007039 |