Optimal partial regularity of minimizers of quasiconvex variational integrals

We prove partial regularity with optimal Hölder exponent of vector-valued minimizers u of the quasiconvex variational integral $\int F( x,u,Du) \,{\rm d}x$ under polynomial growth. We employ the indirect method of the bilinear form.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2007-10, Vol.13 (4), p.639-656
1. Verfasser: Hamburger, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove partial regularity with optimal Hölder exponent of vector-valued minimizers u of the quasiconvex variational integral $\int F( x,u,Du) \,{\rm d}x$ under polynomial growth. We employ the indirect method of the bilinear form.
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv:2007039