Ginkgolic acid inhibits Ebola virus transcription and replication by disrupting the interaction between nucleoprotein and VP30 protein
The Ebola virus, a filovirus, has been responsible for significant human fatalities since its discovery. Despite extensive research, effective small-molecule drugs remain elusive due to its complex pathogenesis. Inhibition of RNA synthesis is a promising therapeutic target, and the VP30 protein play...
Gespeichert in:
Veröffentlicht in: | Antiviral research 2025-02, Vol.234, p.106074, Article 106074 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Ebola virus, a filovirus, has been responsible for significant human fatalities since its discovery. Despite extensive research, effective small-molecule drugs remain elusive due to its complex pathogenesis. Inhibition of RNA synthesis is a promising therapeutic target, and the VP30 protein plays a critical role in this process. The interaction between VP30 and the nucleoprotein (NP) is essential for viral replication. We identified ginkgolic acid as a small molecule with strong affinity for VP30, which was validated through multiple assays, including thermal shift, surface plasmon resonance, fluorescence polarization, pull-down, and co-immunoprecipitation. The antiviral efficacy of ginkgolic acid was demonstrated in the EBOV transcription- and replication-competent virus-like particle (trVLP) system. Furthermore, we resolved the crystal structure of the VP30-ginkgolic acid complex, revealing two ginkgolic acid molecules located at the VP30/NP interaction interface. This structural information provides insight into the molecular basis of ginkgolic acid's antiviral activity and suggests a novel therapeutic strategy targeting the VP30/NP interaction.
•Identification of ginkgolic acid as an inhibitor of Ebola virus transcription and replication.•Ginkgolic acid targets the Ebola virus VP30/NP binding interface.•Crystal structure reveals that ginkgolic acid binds to a groove on VP30 critical for NP interaction. |
---|---|
ISSN: | 0166-3542 1872-9096 1872-9096 |
DOI: | 10.1016/j.antiviral.2024.106074 |